Genome editing: A perspective on the application of CRISPR/Cas9 to study human diseases (Review)

被引:90
作者
Raquel Rodriguez-Rodriguez, Diana [1 ,2 ]
Ramirez-Solis, Ramiro [3 ]
Alberto Garza-Elizondo, Mario [2 ,4 ]
De Lourdes Garza-Rodriguez, Maria [1 ,2 ]
Alberto Barrera-Saldana, Hugo [1 ,2 ,5 ,6 ]
机构
[1] Univ Autonoma Nuevo Leon, Dept Biochem & Mol Med, Sch Med, Monterrey 64460, Nuevo Leon, Mexico
[2] Univ Hosp Dr Jose E Gonzalez, Monterrey 64460, Nuevo Leon, Mexico
[3] Univ Texas Hlth Sci Ctr San Antonio, Inst Core Labs, San Antonio, TX 78229 USA
[4] Univ Autonoma Nuevo Leon, Serv Rheumatol, Sch Med, Monterrey 64460, Nuevo Leon, Mexico
[5] SA CV, Vitagenesis, Monterrey 64630, Nuevo Leon, Mexico
[6] Tecnol Monterrey, Escuela Med & Ciencias Salud, Ave Morones Prieto 3000, Monterrey 64710, Nuevo Leon, Mexico
关键词
CRISPR/Cas9; genome editing; disease models; pulmonary disease; gastrointestinal disease; hematologic disease; viral disease; cancer; autoimmune disease; inflammatory disease; SEVERE COMBINED IMMUNODEFICIENCY; PROVIDES ACQUIRED-RESISTANCE; COMPREHENSIVE DESIGN TOOL; IN-VIVO; MOUSE MODEL; GENE CORRECTION; ANTIVIRAL DEFENSE; REPEATS CRISPRS; DOUBLE-NICKING; IMMUNE-SYSTEM;
D O I
10.3892/ijmm.2019.4112
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Genome editing reemerged in 2012 with the development of CRISPR/Cas9 technology, which is a genetic manipulation tool derived from the defense system of certain bacteria against viruses and plasmids. This method is easy to apply and has been used in a wide variety of experimental models, including cell lines, laboratory animals, plants, and even in human clinical trials. The CRISPR/Cas9 system consists of directing the Cas9 nuclease to create a site-directed double-strand DNA break using a small RNA molecule as a guide. A process that allows a permanent modification of the genomic target sequence can repair the damage caused to DNA. In the present study, the basic principles of the CRISPR/Cas9 system are reviewed, as well as the strategies and modifications of the enzyme Cas9 to eliminate the off-target cuts, and the different applications of CRISPR/Cas9 as a system for visualization and gene expression activation or suppression. In addition, the review emphasizes on the potential application of this system in the treatment of different diseases, such as pulmonary, gastrointestinal, hematologic, immune system, viral, autoimmune and inflammatory diseases, and cancer.
引用
收藏
页码:1559 / 1574
页数:16
相关论文
共 175 条
[41]   CRISPR/Cas9 β-globin gene targeting in human haematopoietic stem cells [J].
Dever, Daniel P. ;
Bak, Rasmus O. ;
Reinisch, Andreas ;
Camarena, Joab ;
Washington, Gabriel ;
Nicolas, Carmencita E. ;
Pavel-Dinu, Mara ;
Saxena, Nivi ;
Wilkens, Alec B. ;
Mantri, Sruthi ;
Uchida, Nobuko ;
Hendel, Ayal ;
Narla, Anupama ;
Majeti, Ravindra ;
Weinberg, Kenneth I. ;
Porteus, Matthew H. .
NATURE, 2016, 539 (7629) :384-389
[42]   Rational design of highly active sgRNAs for CRISPR-Cas9-mediated gene inactivation [J].
Doench, John G. ;
Hartenian, Ella ;
Graham, Daniel B. ;
Tothova, Zuzana ;
Hegde, Mudra ;
Smith, Ian ;
Sullender, Meagan ;
Ebert, Benjamin L. ;
Xavier, Ramnik J. ;
Root, David E. .
NATURE BIOTECHNOLOGY, 2014, 32 (12) :1262-U130
[43]   A novel engineered meganuclease induces homologous recombination in yeast and mammalian cells [J].
Epinat, JC ;
Arnould, S ;
Chames, P ;
Rochaix, P ;
Desfontaines, D ;
Puzin, C ;
Patin, A ;
Zanghellini, A ;
Pâques, F ;
Lacroix, E .
NUCLEIC ACIDS RESEARCH, 2003, 31 (11) :2952-2962
[44]   Efficient Gene Targeting in Golden Syrian Hamsters by the CRISPR/Cas9 System [J].
Fan, Zhiqiang ;
Li, Wei ;
Lee, Sang R. ;
Meng, Qinggang ;
Shi, Bi ;
Bunch, Thomas D. ;
White, Kenneth L. ;
Kong, Il-Keun ;
Wang, Zhongde .
PLOS ONE, 2014, 9 (10)
[45]   CRISPR-mediated genotypic and phenotypic correction of a chronic granulomatous disease mutation in human iPS cells [J].
Flynn, Rowan ;
Grundmann, Alexander ;
Renz, Peter ;
Haenseler, Walther ;
James, William S. ;
Cowley, Sally A. ;
Moore, Michael D. .
EXPERIMENTAL HEMATOLOGY, 2015, 43 (10) :838-848
[46]   Characterization of Staphylococcus aureus Cas9: a smaller Cas9 for all-in-one adeno-associated virus delivery and paired nickase applications [J].
Friedland, Ari E. ;
Baral, Reshica ;
Singhal, Pankhuri ;
Loveluck, Katherine ;
Shen, Shen ;
Sanchez, Minerva ;
Marco, Eugenio ;
Gotta, Gregory M. ;
Maeder, Morgan L. ;
Kennedy, Edward M. ;
Kornepati, Anand V. R. ;
Sousa, Alexander ;
Collins, McKensie A. ;
Jayaram, Hari ;
Cullen, Bryan R. ;
Bumcrot, David .
GENOME BIOLOGY, 2015, 16
[47]   CRISPR-dCas9 and sgRNA scaffolds enable dual-colour live imaging of satellite sequences and repeat-enriched individual loci [J].
Fu, Yi ;
Rocha, Pedro P. ;
Luo, Vincent M. ;
Raviram, Ramya ;
Deng, Yan ;
Mazzoni, Esteban O. ;
Skok, Jane A. .
NATURE COMMUNICATIONS, 2016, 7
[48]   ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering [J].
Gaj, Thomas ;
Gersbach, Charles A. ;
Barbas, Carlos F., III .
TRENDS IN BIOTECHNOLOGY, 2013, 31 (07) :397-405
[49]   The CRISPR/Cas9 system efficiently reverts the tumorigenic ability of BCR/ABL in vitro and in a xenograft model of chronic myeloid leukemia [J].
Garcia-Tunon, Ignacio ;
Hernandez-Sanchez, Maria ;
Luis Ordonez, Jose ;
Alonso-Perez, Veronica ;
Alamo-Quijada, Miguel ;
Benito, Rocio ;
Guerrero, Carmen ;
Maria Hernandez-Rivas, Jesus ;
Sanchez-Martin, Manuel .
ONCOTARGET, 2017, 8 (16) :26027-26040
[50]   The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA [J].
Garneau, Josiane E. ;
Dupuis, Marie-Eve ;
Villion, Manuela ;
Romero, Dennis A. ;
Barrangou, Rodolphe ;
Boyaval, Patrick ;
Fremaux, Christophe ;
Horvath, Philippe ;
Magadan, Alfonso H. ;
Moineau, Sylvain .
NATURE, 2010, 468 (7320) :67-71