A correspondence theorem for L-functions and partial differential operators

被引:0
作者
Kaczorowski, Jerzy [1 ,2 ]
Perelli, Alberto [3 ]
机构
[1] Adam Mickiewicz Univ, Fac Math & Comp Sci, PL-61614 Poznan, Poland
[2] Polish Acad Sci, Inst Math, PL-00956 Warsaw, Poland
[3] Univ Genoa, Dipartimento Matemat, I-16146 Genoa, Italy
来源
PUBLICATIONES MATHEMATICAE-DEBRECEN | 2011年 / 79卷 / 3-4期
关键词
L-functions; Selberg class; correspondence theorems; modular forms; partial differential operators; SELBERG CLASS;
D O I
10.5486/PMD.2011.5148
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given an L-function F(s) from the extended Selberg class, we associate a function Phi(F)(x, y). We show that the functions Phi(F)(x, y) are, in the general case, the analogs of the modular forms associated with the GL(2) L-functions. Indeed, we prove that every Phi(F)(x, y) is eigenfunction of a certain partial differential operator. Moreover, we prove a general correspondence theorem for such L-functions involving the functions Phi(F)(x, y).
引用
收藏
页码:497 / 505
页数:9
相关论文
共 50 条
  • [21] Structural invariants of L-functions and applications: a survey
    Kaczorowski, Jerzy
    Perelli, Alberto
    [J]. RIVISTA DI MATEMATICA DELLA UNIVERSITA DI PARMA, 2022, 13 (01): : 137 - 159
  • [22] A CHARACTERIZATION OF L-FUNCTIONS IN THE EXTENDED SELBERG CLASS
    Hu, Peichu
    Zhang, Pingyuan
    [J]. Bulletin of the Korean Mathematical Society, 2016, 53 (06) : 1645 - 1650
  • [23] AVERAGES OF TWISTED L-FUNCTIONS
    Jackson, Julia
    Knightly, Andrew
    [J]. JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2015, 99 (02) : 207 - 236
  • [24] Convexity bounds for L-functions
    Heath-Brown, D. R.
    [J]. ACTA ARITHMETICA, 2009, 136 (04) : 391 - 395
  • [25] On common zeros of L-functions
    Bao Qin Li
    [J]. Mathematische Zeitschrift, 2012, 272 : 1097 - 1102
  • [26] On common zeros of L-functions
    Li, Bao Qin
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2012, 272 (3-4) : 1097 - 1102
  • [27] Gaps between zeros of GL(2) L-functions
    Barrett, Owen
    McDonald, Brian
    Miller, Steven J.
    Ryan, Patrick
    Turnage-Butterbaugh, Caroline L.
    Winsor, Karl
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 429 (01) : 204 - 232
  • [28] Classification of L-functions of degree 2 and conductor 1
    Kaczorowski, Jerzy
    Perelli, Alberto
    [J]. ADVANCES IN MATHEMATICS, 2022, 408
  • [29] On the modified Li criterion for a certain class of L-functions
    Ernvall-Hytonen, Anne-Maria
    Odzak, Almasa
    Smajlovic, Lejla
    Susic, Medina
    [J]. JOURNAL OF NUMBER THEORY, 2015, 156 : 340 - 367
  • [30] Non-linear Twists of L-Functions: A Survey
    Perelli, A.
    [J]. MILAN JOURNAL OF MATHEMATICS, 2010, 78 (01) : 117 - 134