Amperometric detection of triclosan with screen-printed carbon nanotube electrodes modified with Guinea Grass (Panicum maximum) peroxidase

被引:4
作者
Orduz, Angie E. [1 ]
Gutierrez, Jorge A. [2 ]
Blanco, Sergio I. [3 ]
Castillo, John J. [1 ]
机构
[1] Univ Ind St ander, Escuela Quim, Grp Invest Bioquim & Microbiol GiBiM, Bucaramanga, Colombia
[2] Univ del Quindio, Fac Ciencias Salud, Programa Seguridad & Salud Trabajo, Armenia, Colombia
[3] Univ Ind St ander, Escuela Ingn Met, Bucaramanga, Colombia
关键词
amperometric biosensor; carbon nanotubes; guinea grass peroxidase; screen printed electrodes; triclosan;
D O I
10.11144/Javeriana.SC24-2.adot
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Triclosan is a compound with antimicrobial activity broadly used in consumer products. Because of its well-documented toxicity, the amount of triclosan present in different products needs to be tightly controlled. This paper outlines a new amperometric sensor for triclosan detection consisting of a screen-printed carbon nanotube electrode (SPCNE) modified with Guinea grass peroxidase (GGP). The GGP-modified SPCNE was able to detect an enhanced electrochemical response of triclosan, unlike the bare SPCNE. The cyclic voltammograms of the GGP-modified SPCNE in a solution of potassium ferrocyanide showed an increase in the current values and linearity between scan rates and oxidation peak currents, suggesting a surface-controlled process. The GGP-modified SPCNE showed an excellent electrocatalytic activity to triclosan oxidation, at a redox potential of 370 mV, in the presence of hydrogen peroxide, exhibiting a linear response between 20 mM to 80 mM and a detection limit of 3 mu M. This new amperometry system, based on carbon nanotubes integrated with GGP, becomes a potential tool for environmental analysis and food quality control.
引用
收藏
页码:363 / 379
页数:17
相关论文
共 20 条
[1]   Phenols removal by immobilized horseradish peroxidase [J].
Alemzadeh, I. ;
Nejati, S. .
JOURNAL OF HAZARDOUS MATERIALS, 2009, 166 (2-3) :1082-1086
[2]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[3]   Bioelectrocatalysis of plant peroxidases immobilized on graphite in aqueous and mixed solvent media [J].
Brusova, Z ;
Ferapontova, EE ;
Sakharov, IY ;
Magner, E ;
Gorton, L .
ELECTROANALYSIS, 2005, 17 (5-6) :460-468
[4]   A new peroxidase from leaves of guinea grass (Panicum maximum): A potential biocatalyst to build amperometric biosensors [J].
Centeno, Diana A. ;
Solano, Xuxan H. ;
Castillo, John J. .
BIOELECTROCHEMISTRY, 2017, 116 :33-38
[5]   Electrochemical detection of triclosan at a glassy carbon electrode modifies with carbon nanodots and chitosan [J].
Dai, Hong ;
Xu, Guifang ;
Gong, Lingshan ;
Yang, Caiping ;
Lin, Yanyu ;
Tong, Yuejin ;
Chen, Jinghua ;
Chen, Guonan .
ELECTROCHIMICA ACTA, 2012, 80 :362-367
[6]  
Fotouhi L, 2010, INT J ELECTROCHEM SC, V5, P1390
[7]   Biosensors based on novel plant peroxidases:: a comparative study [J].
Gaspar, S ;
Popescu, IC ;
Gazaryan, IG ;
Bautista, AG ;
Sakharov, IY ;
Mattiasson, B ;
Csöregi, E .
ELECTROCHIMICA ACTA, 2000, 46 (2-3) :255-264
[8]   Determination of triclosan, triclocarban and methyl-triclosan in aqueous samples by dispersive liquid-liquid microextraction combined with rapid liquid chromatography [J].
Guo, Jie-Hong ;
Li, Xing-Hong ;
Cao, Xue-Li ;
Li, Yan ;
Wang, Xi-Zhi ;
Xu, Xiao-Bai .
JOURNAL OF CHROMATOGRAPHY A, 2009, 1216 (15) :3038-3043
[9]   Direct electrochemistry and biosensing of hydrogen peroxide of horseradish peroxidase immobilized at multiwalled carbon nanotube/alumina-coated silica nanocomposite modified glassy carbon electrode [J].
Huang, Jian-Lung ;
Tsai, Yu-Chen .
SENSORS AND ACTUATORS B-CHEMICAL, 2009, 140 (01) :267-272
[10]   Triclosan (TCS) and triclocarban (TCC) induce systemic toxic effects in a model organism the nematode Caenorhabditis elegans [J].
Lenz, Katrina A. ;
Pattison, Claire ;
Ma, Hongbo .
ENVIRONMENTAL POLLUTION, 2017, 231 :462-470