BRAIN MRI SUPER RESOLUTION USING 3D DEEP DENSELY CONNECTED NEURAL NETWORKS

被引:0
作者
Chen, Yuhua [1 ,2 ]
Xie, Yibin [2 ]
Zhou, Zhengwei [1 ,2 ]
Shi, Feng [2 ]
Christodoulou, Anthony G. [2 ]
Li, Debiao [1 ,2 ]
机构
[1] Univ Calif Los Angeles, Dept Bioengn, Los Angeles, CA 90095 USA
[2] Cedars Sinai Med Ctr, Biomed Image Res Inst, Los Angeles, CA 90048 USA
来源
2018 IEEE 15TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2018) | 2018年
关键词
Super-resolution; MRI; deep learning; 3D Neural Network; image enhancement; IMAGE SUPERRESOLUTION;
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Magnetic resonance image (MRI) in high spatial resolution provides detailed anatomical information and is often necessary for accurate quantitative analysis. However, high spatial resolution typically comes at the expense of longer scan time, less spatial coverage, and lower signal to noise ratio (SNR). Single Image Super-Resolution (SISR), a technique aimed to restore high-resolution (HR) details from one single low-resolution (LR) input image, has been improved dramatically by recent breakthroughs in deep learning. In this paper, we introduce a new neural network architecture, 3D Densely Connected Super-Resolution Networks (DCSRN) to restore HR features of structural brain MR images. Through experiments on a dataset with 1,113 subjects, we demonstrate that our network outperforms bicubic interpolation as well as other deep learning methods in restoring 4x resolution-reduced images.
引用
收藏
页码:739 / 742
页数:4
相关论文
共 14 条
[1]  
Abadi M, 2016, ACM SIGPLAN NOTICES, V51, P1, DOI [10.1145/3022670.2976746, 10.1145/2951913.2976746]
[2]   Accelerating the Super-Resolution Convolutional Neural Network [J].
Dong, Chao ;
Loy, Chen Change ;
Tang, Xiaoou .
COMPUTER VISION - ECCV 2016, PT II, 2016, 9906 :391-407
[3]   Image Super-Resolution Using Deep Convolutional Networks [J].
Dong, Chao ;
Loy, Chen Change ;
He, Kaiming ;
Tang, Xiaoou .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2016, 38 (02) :295-307
[4]  
Glasner D, 2009, IEEE I CONF COMP VIS, P349, DOI 10.1109/ICCV.2009.5459271
[5]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778
[6]   Densely Connected Convolutional Networks [J].
Huang, Gao ;
Liu, Zhuang ;
van der Maaten, Laurens ;
Weinberger, Kilian Q. .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :2261-2269
[7]   Backpropagation Applied to Handwritten Zip Code Recognition [J].
LeCun, Y. ;
Boser, B. ;
Denker, J. S. ;
Henderson, D. ;
Howard, R. E. ;
Hubbard, W. ;
Jackel, L. D. .
NEURAL COMPUTATION, 1989, 1 (04) :541-551
[8]  
Pham C.-H., 2017, 2017 IEEE 14 INT S B
[9]   Super-resolution methods in MRI: Can they improve the trade-off between resolution, signal-to-noise ratio, and acquisition time? [J].
Plenge, Esben ;
Poot, Dirk H. J. ;
Bernsen, Monique ;
Kotek, Gyula ;
Houston, Gavin ;
Wielopolski, Piotr ;
van der Weerd, Louise ;
Niessen, Wiro J. ;
Meijering, Erik .
MAGNETIC RESONANCE IN MEDICINE, 2012, 68 (06) :1983-1993
[10]   LRTV: MR Image Super-Resolution With Low-Rank and Total Variation Regularizations [J].
Shi, Feng ;
Cheng, Jian ;
Wang, Li ;
Yap, Pew-Thian ;
Shen, Dinggang .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2015, 34 (12) :2459-2466