Fair domination in graphs

被引:29
作者
Caro, Yair [2 ]
Hansberg, Adriana [1 ]
Henning, Michael [3 ]
机构
[1] UPC Barcelona, Dept Matemat Aplicada 3, Barcelona 08034, Spain
[2] Univ Haifa, Dept Math & Phys, IL-36006 Tivon, Israel
[3] Univ Johannesburg, Dept Math, ZA-2006 Auckland Pk, South Africa
基金
新加坡国家研究基金会;
关键词
Fair domination;
D O I
10.1016/j.disc.2012.05.006
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A fair dominating set in a graph G (or FD-set) is a dominating set S such that all vertices not in Sate dominated by the same number of vertices from S; that is, every two vertices not in S has the same number of neighbors in S. The fair domination number, fd(G), of G is the minimum cardinality of an FD-set. Among other results, we show that if G is a connected graph of order n >= 3 with no isolated vertex, then fd(G) <= n - 2, and we construct an infinite family of connected graphs achieving equality in this bound. We show that if G is a maximal outerplanar graph, then fd(G) < 17n/19. If T is a tree of order n >= 2, then we prove that fd(T) <= n/2 with equality if and only if T is the corona of a tree. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:2905 / 2914
页数:10
相关论文
共 17 条
[1]   LARGE NEARLY REGULAR INDUCED SUBGRAPHS [J].
Alon, Noga ;
Krivelevich, Michael ;
Sudakov, Benny .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2008, 22 (04) :1325-1337
[2]   Maximum k-regular induced subgraphs [J].
Cardoso, Domingos M. ;
Kaminski, Marcin ;
Lozin, Vadim .
JOURNAL OF COMBINATORIAL OPTIMIZATION, 2007, 14 (04) :455-463
[3]   Main eigenvalues and (κ, τ)-regular sets [J].
Cardoso, Domingos M. ;
Sciriha, Irene ;
Zerafa, Cheryl .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 432 (09) :2399-2408
[4]  
Caro Y., 1979, Technical Report
[5]  
Caro Y, 2009, ELECTRON J COMB, V16
[6]   Integral graphs and (κ, τ)-regular sets [J].
Carvalho, Paula ;
Rama, Paula .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 432 (09) :2409-2417
[7]  
Chaluvaraju B., 2008, ADV APPL DISCRETE MA, V2, P49
[8]  
Dejter Italo J., 2009, Journal of Combinatorial Mathematics and Combinatorial Computing, V70, P177
[9]  
Dejter IJ, 2008, AUSTRALAS J COMB, V42, P99
[10]  
Fink J.F., 1985, GRAPH THEORY APPL AL, P282