Hemocompatibility of EpoCore/EpoClad photoresists on COC substrate for optofluidic integrated Bragg sensors

被引:20
作者
Hessler, S. [1 ]
Rueth, M. [2 ]
Sauvant, C. [2 ]
Lemke, H. -D. [2 ]
Schmauss, B. [3 ]
Hellmann, R. [1 ]
机构
[1] Univ Appl Sci Aschaffenburg, Appl Laser & Photon Grp, Wuerzburger Str 45, D-63743 Aschaffenburg, Germany
[2] eXcorLab GmbH, Ind Ctr Obernburg, D-63784 Obernburg, Germany
[3] Univ Erlangen Nurnberg, Inst Microwaves & Photon, Cauerstr 9, D-91058 Erlangen, Germany
关键词
EpoCore/EpoClad photoresists; Hemocompatibility; Bragg grating; Refractive index sensing; Evanescent field; Optofluidics; ON-A-CHIP;
D O I
10.1016/j.snb.2016.08.113
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
We report on the hemocompatibility properties of EpoCore/EpoClad UV-structurable epoxy resins in combination with a TOPAS(R) cyclic olefin copolymer substrate for potential application as an optofluidic biosensor chip. For comprehensive hemocompatibility tests human blood is directly exposed to layers of the different chip materials up to 3 h. Counts in white blood cells, red blood cells and platelets as well as hemolysis and concentration of thrombin/antithrombin complex (TAT), of complement fragment (C5a) and heparin are determined. Our results attest TOPAS and the epoxy resins high hemocompatibility properties. Subsequently, an optofluidic chip fabrication concept with integrated Bragg grating sensors is suggested. Bragg gratings are directly inscribed into rectangular EpoCore waveguides on TOPAS 6017 substrate by coherent phase mask illumination. UV-structured EpoClad resist serves both as waveguide cladding and microfluidic channel network. In evanescent field refractive index sensing experiments sensitivities up to 76.9 nm/RIU and a maximum refractive index resolution of 1.3.10-5 are achieved by detecting multimode Bragg reflections. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:916 / 922
页数:7
相关论文
共 21 条
  • [1] ALJAMA P, 1986, Blood Purification, V4, P88, DOI 10.1159/000169431
  • [2] Lab-on-a-chip with integrated optical transducers
    Balslev, S
    Jorgensen, AM
    Bilenberg, B
    Mogensen, KB
    Snakenborg, D
    Geschke, O
    Kutter, JP
    Kristensen, A
    [J]. LAB ON A CHIP, 2006, 6 (02) : 213 - 217
  • [3] A lab-on-a-chip for rapid blood separation and quantification of hematocrit and serum analytes
    Browne, Andrew W.
    Ramasamy, Lakshminarayanan
    Cripe, Timothy P.
    Ahn, Chong H.
    [J]. LAB ON A CHIP, 2011, 11 (14) : 2440 - 2446
  • [4] RAPID METHOD FOR ESTIMATION OF PLASMA HAEMOGLOBIN LEVELS
    CRIPPS, CM
    [J]. JOURNAL OF CLINICAL PATHOLOGY, 1968, 21 (01) : 110 - &
  • [5] Nanobiosensors: optofluidic, electrical and mechanical approaches to biomolecular detection at the nanoscale
    Erickson, David
    Mandal, Sudeep
    Yang, Allen H. J.
    Cordovez, Bernardo
    [J]. MICROFLUIDICS AND NANOFLUIDICS, 2008, 4 (1-2) : 33 - 52
  • [6] Fiedler E., 2014, P 36 ENG MED BIOL SO
  • [7] An EpoClad/EpoCore-based platform for MOEMS fabrication
    Guan, Tiannan
    Ceyssens, Frederik
    Puers, Robert
    [J]. JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2013, 23 (12)
  • [8] Microfluidic platforms for lab-on-a-chip applications
    Haeberle, Stefan
    Zengerle, Roland
    [J]. LAB ON A CHIP, 2007, 7 (09) : 1094 - 1110
  • [9] Platelet activation through interaction with hemodialysis membranes induces neutrophils to produce reactive oxygen species
    Itoh, S
    Susuki, C
    Tsuji, T
    [J]. JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2006, 77A (02) : 294 - 303
  • [10] Kawano K., 2001, INTRO OPTICAL WAVEGU