Non-local reaction-diffusion system involving reaction radius II: rate of convergence

被引:1
作者
Kavallaris, Nikos I. [1 ]
Suzuki, Takashi [2 ]
机构
[1] Univ Aegean, Dept Stat & Actuarial Financial Math, Karlovassi 82300, Samos, Greece
[2] Osaka Univ, Grad Sch Engn Sci, Dept Syst Innovat, Div Math Sci, Toyonaka, Osaka 5608531, Japan
关键词
reaction-diffusion systems; reaction radius; non-local;
D O I
10.1093/imamat/hxs032
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We continue the study on a reaction-diffusion system with non-local terms, which arises as a mean field limit of a master equation using a reaction radius. This work was initiated in Kavallaris & Suzuki (2012, Non-local reaction-diffusion system involved by reaction radius I. IMA J. Appl. Math., 1-19), and here, we investigate the rate of convergence of the solution towards the unique stationary solution.
引用
收藏
页码:1 / 21
页数:21
相关论文
共 12 条
[2]  
[Anonymous], 1998, PARTIAL DIFFERENTIAL
[3]  
[Anonymous], LECT NOTES MATH
[4]   MOVEMENT OF A CHEMICAL REACTION INTERFACE [J].
CANNON, JR ;
HILL, CD .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1970, 20 (05) :429-&
[5]  
Evans LC., 1980, Houston J. Math., V6, P259
[6]  
Henry D., 1981, GEOMETRIC THEORY SEM
[7]   Exponentially decaying component of a global solution to a reaction-diffusion system [J].
Hoshino, H ;
Kawashima, S .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 1998, 8 (05) :897-904
[8]   ASYMPTOTIC-BEHAVIOR OF GLOBAL-SOLUTIONS FOR SOME REACTION-DIFFUSION SYSTEMS [J].
HOSHINO, H ;
YAMADA, Y .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1994, 23 (05) :639-650
[9]   ASYMPTOTIC EQUIVALENCE OF A REACTION-DIFFUSION SYSTEM TO THE CORRESPONDING SYSTEM OF ORDINARY DIFFERENTIAL-EQUATIONS [J].
HOSHINO, H ;
KAWASHIMA, S .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 1995, 5 (06) :813-834
[10]  
Hoshino H., 1991, FUNKC EKVACIOJ-SER I, V34, P639