Magnetic Field Sensor Using Fiber Ring Cavity Laser Based on Magnetic Fluid

被引:27
作者
Bai, Xuekun [1 ,2 ]
Yuan, Jun [1 ,2 ]
Gu, Jie [1 ,2 ]
Wang, Shaofei [1 ,2 ]
Zhao, Yunhe [1 ,2 ]
Pu, Shengli [3 ]
Zeng, Xianglong [1 ,2 ]
机构
[1] Shanghai Univ, Key Lab Specialty Fiber Opt, Shanghai 200072, Peoples R China
[2] Shanghai Univ, Opt Access Network, Shanghai 200072, Peoples R China
[3] Univ Shanghai Sci & Technol, Coll Sci, Shanghai 200093, Peoples R China
基金
中国国家自然科学基金;
关键词
Magnetic field sensor; fiber optics sensors; laser sensors; magnetic fluid; self-imaging effect; MICROSTRUCTURED OPTICAL-FIBER; INTERFERENCE;
D O I
10.1109/LPT.2015.2487379
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A magnetic field sensor using fiber ring cavity laser based on magnetic fluid (MF) is proposed and experimentally demonstrated. MF-coated single-mode-no-core-single-mode fiber structure is inserted in the fiber ring laser cavity, which acts as a bandpass filter and the magnetic field sensing component simultaneously. The excellent bandpass filtering with a high side-mode suppression ratio (14 dB) and small insert loss of around (-1.03 dB) is caused by the self-imaging effect. The experimental results show that the lasing wavelength shifts to blue side with the increase of external magnetic field. The magnetic field sensing sensitivity of 12.05 pm/Oe is achieved within the range of 15.9-222.32 Oe. This configuration exhibits obvious advantages in term of high visibility (similar to 40 dB) and relative narrow 3-dB bandwidth (similar to 0.19 nm) of the lasing output spectrum. Therefore, its Q value is more than 10 times larger than those of other reported magnetic field sensing structures.
引用
收藏
页码:115 / 118
页数:4
相关论文
共 27 条
[1]   Tunable multimode-interference bandpass fiber filter [J].
Antonio-Lopez, J. E. ;
Castillo-Guzman, A. ;
May-Arrioja, D. A. ;
Selvas-Aguilar, R. ;
LikamWa, P. .
OPTICS LETTERS, 2010, 35 (03) :324-326
[2]   Strain Sensor Based on Fiber Ring Cavity Laser With Photonic Crystal Fiber In-Line Mach-Zehnder Interferometer [J].
Bai, Xuekun ;
Fan, Dengfeng ;
Wang, Shaofei ;
Pu, Shengli ;
Zeng, Xianglong .
IEEE PHOTONICS JOURNAL, 2014, 6 (04)
[3]   A loss-based, magnetic field sensor implemented in a ferrofluid infiltrated microstructured polymer optical fiber [J].
Candiani, A. ;
Argyros, A. ;
Leon-Saval, S. G. ;
Lwin, R. ;
Selleri, S. ;
Pissadakis, S. .
APPLIED PHYSICS LETTERS, 2014, 104 (11)
[4]   Optofluidic magnetometer developed in a microstructured optical fiber [J].
Candiani, A. ;
Konstantaki, M. ;
Margulis, W. ;
Pissadakis, S. .
OPTICS LETTERS, 2012, 37 (21) :4467-4469
[5]  
Candiani A, 2011, OPT LETT, V36, P2548, DOI 10.1364/OL.36.002548
[6]   Optical fiber magnetic field sensor based on single-mode-multimode-single-mode structure and magnetic fluid [J].
Chen, Yaofei ;
Han, Qun ;
Liu, Tiegen ;
Lan, Xinwei ;
Xiao, Hai .
OPTICS LETTERS, 2013, 38 (20) :3999-4001
[7]   Compact magnetic-field sensor based on optical microfiber Michelson interferometer and Fe3O4 nanofluid [J].
Deng, Ming ;
Sun, Xiaokang ;
Han, Meng ;
Li, Decai .
APPLIED OPTICS, 2013, 52 (04) :734-741
[8]   Magnetic field sensing based on magneto-volume variation of magnetic fluids investigated by air-gap Fabry- Perot fiber interferometers [J].
Dong, Shaohua ;
Pu, Shengli ;
Huang, Juan .
APPLIED PHYSICS LETTERS, 2013, 103 (11)
[9]   All-fiber magnetic field sensors based on magnetic fluid-filled photonic crystal fibers [J].
Gao, R. ;
Jiang, Y. ;
Abdelaziz, S. .
OPTICS LETTERS, 2013, 38 (09) :1539-1541
[10]   Designing optical-fiber modulators by using magnetic fluids [J].
Horng, HE ;
Chieh, JJ ;
Chao, YH ;
Yang, SY ;
Hong, CY ;
Yang, HC .
OPTICS LETTERS, 2005, 30 (05) :543-545