Invariant Discretization Schemes Using Evolution-Projection Techniques

被引:11
作者
Bihlo, Alexander [1 ,2 ]
Nave, Jean-Christophe [2 ]
机构
[1] Univ Montreal, Ctr Rech Math, Montreal, PQ H3C 3J7, Canada
[2] McGill Univ, Dept Math & Stat, Montreal, PQ H3A 2K6, Canada
基金
加拿大自然科学与工程研究理事会; 奥地利科学基金会; 美国国家科学基金会;
关键词
invariant numerical schemes; moving frame; evolution-projection method; heat equation; PARTIAL-DIFFERENTIAL-EQUATIONS; SHALLOW-WATER EQUATIONS; GEOMETRIC INTEGRATION; NUMERICAL SCHEMES; MOVING COFRAMES; HEAT-TRANSFER; SYMMETRY; FOUNDATIONS; ALGORITHMS;
D O I
10.3842/SIGMA.2013.052
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Finite difference discretization schemes preserving a subgroup of the maximal Lie invariance group of the one-dimensional linear heat equation are determined. These invariant schemes are constructed using the invariantization procedure for non-invariant schemes of the heat equation in computational coordinates. We propose a new methodology for handling moving discretization grids which are generally indispensable for invariant numerical schemes. The idea is to use the invariant grid equation, which determines the locations of the grid point at the next time level only for a single integration step and then to project the obtained solution to the regular grid using invariant interpolation schemes. This guarantees that the scheme is invariant and allows one to work on the simpler stationary grids. The discretization errors of the invariant schemes are established and their convergence rates are estimated. Numerical tests are carried out to shed some light on the numerical properties of invariant discretization schemes using the proposed evolution-projection strategy.
引用
收藏
页数:23
相关论文
共 36 条
[1]  
[Anonymous], 1993, GRADUATE TEXTS MATH
[2]  
[Anonymous], 2006, SPRINGER SERIES COMP
[3]  
[Anonymous], 2007, PARAMETERIZATION SCH
[4]  
[Anonymous], 2004, CAMBRIDGE MONOGRAPHS
[5]   Symmetry-preserving difference schemes for some heat transfer equations [J].
Bakirova, MI ;
Dorodnitsyn, VA ;
Kozlov, RV .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (23) :8139-8155
[6]   INVARIANT DISCRETIZATION SCHEMES FOR THE SHALLOW-WATER EQUATIONS [J].
Bihlo, Alexander ;
Popovych, Roman O. .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2012, 34 (06) :B810-B839
[7]  
Bluman G W., 1989, APPL MATH SCI, V81, pXIII
[8]   Numerical methods for Hamiltonian PDEs [J].
Bridges, Thomas J. ;
Reich, Sebastian .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (19) :5287-5320
[9]   Symmetry-adapted moving mesh schemes for the nonlinear Schrodinger equation [J].
Budd, C ;
Dorodnitsyn, V .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (48) :10387-10400
[10]  
Budd CJ, 2009, ACTA NUMER, V18, P111, DOI 10.1017/S0962492906400015