Cycling profile of MgAl2O4-incorporated composite electrolytes composed of PEO and LiPF6 for lithium polymer batteries

被引:91
作者
Angulakshmi, N. [1 ]
Nahm, K. S. [1 ]
Nair, Jijeesh R. [2 ]
Gerbaldi, C. [2 ]
Bongiovanni, R. [2 ]
Penazzi, N. [2 ]
Stephan, A. Manuel [3 ]
机构
[1] Chonbuk Natl Univ, Sch Chem Engn, Jeonju 561756, South Korea
[2] Politecn Torino, Inst Chem, Dept Appl Sci & Technol DISAT, I-10129 Turin, Italy
[3] Cent Electrochem Res Inst CSIR CECRI, Electrochem Power Syst Div, Karaikkudi 630006, Tamil Nadu, India
关键词
Lithium-polymer batteries; Compatibility; Lewis-acid base theory; Composite polymer electrolytes; Ionic conductivity; Charge discharge studies; INTERFACIAL PROPERTIES; POLY(ETHYLENE OXIDE); SOLID ELECTROLYTES; IONIC-CONDUCTIVITY; SOLVENT-FREE; NANOCOMPOSITES; PERFORMANCES; STABILITY; POWDERS; SIO2;
D O I
10.1016/j.electacta.2012.12.003
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Magnesium aluminate (MgAl2O4)-incorporated poly(ethylene oxide) (PEO)-lithium hexafluorophosphate (LiPF6) based composite polymer electrolyte (CPE) membranes were prepared by a hot press for the first time. The membranes were subjected to X-ray diffraction (XRD), scanning electron microscopy (SEM), thermogravimetric (TG), differential scanning calorimetry (DSC), tensile, impedance spectroscopy, compatibility and transport number studies. The incorporation of MgAl2O4 greatly enhanced the ionic conductivity, compatibility and mechanical integrity of the polymeric membrane. Finally, an all solid state lithium cell composed of Li/CPE/LiFePO4 was assembled and its cycling profile was analyzed at 70 degrees C. The cells delivered a discharge capacity of 127 mAh g(-1) at 1 C-rate with very good capacity retention up to 100 cycles which is found to be better than those reported earlier. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:179 / 185
页数:7
相关论文
共 44 条
[1]   Physical and Electrochemical Properties of MgAl2O4-Incorporated Polymer Electrolytes Composed of Poly(ethylene oxide) and LiClO4 [J].
Angulakshmi, N. ;
Elizabeth, R. Nimma ;
Swaminathan, V. ;
Nahm, Kee Suk ;
Stephan, A. Manuel .
SCIENCE OF ADVANCED MATERIALS, 2011, 3 (05) :702-708
[2]   Ionic conductivity and interfacial properties of nanochitin-incorporated polyethylene oxide-LiN(C2F5SO2)2 polymer electrolytes [J].
Angulakshmi, N. ;
Kumar, T. Prem ;
Thomas, Sabu ;
Stephan, A. Manuel .
ELECTROCHIMICA ACTA, 2010, 55 (04) :1401-1406
[3]   Hot-pressed, solvent-free, nanocomposite, PEO-based electrolyte membranes II.: All solid-state Li/LiFePO4 polymer batteries [J].
Appetecchi, GB ;
Hassoun, J ;
Scrosati, B ;
Croce, F ;
Cassel, F ;
Salomon, M .
JOURNAL OF POWER SOURCES, 2003, 124 (01) :246-253
[4]   KINETICS AND STABILITY OF THE LITHIUM ELECTRODE IN POLY(METHYLMETHACRYLATE)-BASED GEL ELECTROLYTES [J].
APPETECCHI, GB ;
CROCE, F ;
SCROSATI, B .
ELECTROCHIMICA ACTA, 1995, 40 (08) :991-997
[5]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[6]   Characterization of plasticized solid polymer electrolyte by XRD and AC impedance methods [J].
Benedict, TJ ;
Banumathi, S ;
Veluchamy, A ;
Gangadharan, R ;
Ahamad, AZ ;
Rajendran, S .
JOURNAL OF POWER SOURCES, 1998, 75 (01) :171-174
[7]   Nanomaterials for rechargeable lithium batteries [J].
Bruce, Peter G. ;
Scrosati, Bruno ;
Tarascon, Jean-Marie .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (16) :2930-2946
[8]   Determination of moisture content in nylon 6,6 by near-infrared spectroscopy and chemometrics [J].
Camacho, W ;
Vallés-Lluch, A ;
Ribes-Greus, A ;
Karlsson, S .
JOURNAL OF APPLIED POLYMER SCIENCE, 2003, 87 (13) :2165-2170
[9]   Effects of nanoscale SiO2 on the thermal and transport properties of solvent-free, poly(ethylene oxide) (PEO)-based polymer electrolytes [J].
Capiglia, C ;
Mustarelli, P ;
Quartarone, E ;
Tomasi, C ;
Magistris, A .
SOLID STATE IONICS, 1999, 118 (1-2) :73-79
[10]   Novel composite polymer electrolyte comprising mesoporous structured SiO2 and PEO/Li [J].
Chu, PP ;
Reddy, MJ ;
Kao, HM .
SOLID STATE IONICS, 2003, 156 (1-2) :141-153