The invariant subspace problem for absolutely p-summing operators in Krein spaces

被引:0
作者
Wanjala, Gerald [1 ]
机构
[1] Sultan Qaboos Univ, Dept Math & Stat, POB 36 PC 123, Al Khoud, Oman
关键词
Krein spaces; invariant subspace; absolutely p-summing operator;
D O I
10.1186/1029-242X-2012-254
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let 1 <= p < infinity, and let T be a bounded linear operator defined on a Krein space kappa. We prove the existence of a non-positive subspace L_ of kappa invariant under T with the assumption that T is absolutely p-summing with some further conditions imposed on it.
引用
收藏
页数:13
相关论文
共 32 条
[11]  
Gohberg I., 1990, CLASSES LINEAR OPERA, V1
[12]  
Grothendieck A., 1956, RESUME THEORIE METRI
[13]  
Iohvidov I.S., 1982, Introduction to the Spectral Theory of Operators in Spaces with an Indefinite Metric
[14]  
KREIN MG, 1964, DOKL AKAD NAUK SSSR+, V154, P1023
[15]  
Krein MG, 1950, USP MAT NAUK, V50, P180
[16]  
Langer G.K., 1971, FUNKCIONAL ANAL PRIL, V5, P54
[17]   INVARIANT SUBSPACES FOR A CLASS OF OPERATORS IN SPACES WITH INDEFINITE METRIC [J].
LANGER, H .
JOURNAL OF FUNCTIONAL ANALYSIS, 1975, 19 (03) :232-241
[18]  
LANGER H, 1982, LECT NOTES MATH, V948, P1
[19]  
Langer H, 1962, DOKL AKAD NAUK SSSR, V134, P263
[20]   ABSOLUTELY SUMMING OPERATORS IN LP-SPACES AND THEIR APPLICATIONS [J].
LINDENST.J ;
PELCZYNS.A .
STUDIA MATHEMATICA, 1968, 29 (03) :275-&