Investigations of carrier scattering into L-valley in λ=3.5 μm InGaAs/AlAs(Sb) quantum cascade lasers using high hydrostatic pressure

被引:7
作者
Aldukhayel, A. [1 ,2 ]
Jin, S. R. [1 ,2 ]
Marko, I. P. [1 ,2 ]
Zhang, S. Y. [3 ]
Revin, D. G. [4 ]
Cockburn, J. W. [4 ]
Sweeney, S. J. [1 ,2 ]
机构
[1] Univ Surrey, Adv Technol Inst, Guildford GU2 7XH, Surrey, England
[2] Univ Surrey, Dept Phys, Guildford GU2 7XH, Surrey, England
[3] Univ Sheffield, EPSRC Natl Ctr Technol 3 5, Sheffield S1 3JD, S Yorkshire, England
[4] Univ Sheffield, Dept Phys & Astron, Sheffield S3 7RH, S Yorkshire, England
来源
PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS | 2013年 / 250卷 / 04期
基金
英国工程与自然科学研究理事会;
关键词
carrier scattering; high pressure; quantum cascade lasers;
D O I
10.1002/pssb.201200848
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
In order to identify the performance limitations of InGaAs/AlAs(Sb) quantum cascade lasers, experimental investigations of the temperature and pressure dependencies of the threshold current (I-th) were undertaken. Using the theoretical optical phonon current (I-ph) and carrier leakage (I-leak) to fit the measured threshold current at various pressures, we show that the electron scattering from the top lasing level to the upper L-minima gives rise to the increase in I-th with pressure and temperature. It was found that this carrier leakage path accounts for approximately 3% of I-th at RT and is negligible at 100 K. (C) 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
引用
收藏
页码:693 / 697
页数:5
相关论文
共 15 条
[1]   GAAS, ALAS, AND ALXGA1-XAS - MATERIAL PARAMETERS FOR USE IN RESEARCH AND DEVICE APPLICATIONS [J].
ADACHI, S .
JOURNAL OF APPLIED PHYSICS, 1985, 58 (03) :R1-R29
[2]   Semiconductor optoelectronic devices [J].
Adams, AR ;
Silver, M ;
Allam, J .
HIGH PRESSURE IN SEMICONDUCTOR PHYSICS II, 1998, 55 :301-352
[3]   Suppression of carrier leakage in 4.8 μm - emitting quantum cascade lasers [J].
Botez, D. ;
Shin, J. C. ;
Mawst, L. J. ;
Vurgaftman, I. ;
Meyer, J. R. ;
Kumar, S. .
NOVEL IN-PLANE SEMICONDUCTOR LASERS IX, 2010, 7616
[4]   Quantum cascade lasers emitting near 2.6 μm [J].
Cathabard, O. ;
Teissier, R. ;
Devenson, J. ;
Moreno, J. C. ;
Baranov, A. N. .
APPLIED PHYSICS LETTERS, 2010, 96 (14)
[5]   High peak power λ∼3.3 and 3.5 μm InGaAs/AlAs(Sb) quantum cascade lasers operating up to 400 K [J].
Commin, J. P. ;
Revin, D. G. ;
Zhang, S. Y. ;
Krysa, A. B. ;
Kennedy, K. ;
Cockburn, J. W. .
APPLIED PHYSICS LETTERS, 2010, 97 (03)
[6]   Recent progress in quantum cascade lasers and applications [J].
Gmachl, C ;
Capasso, F ;
Sivco, DL ;
Cho, AY .
REPORTS ON PROGRESS IN PHYSICS, 2001, 64 (11) :1533-1601
[7]   Spectroscopy of GaAs/AlGaAs quantum-cascade lasers using hydrostatic pressure [J].
Jin, S. R. ;
Ahmad, C. N. ;
Sweeney, S. J. ;
Adams, A. R. ;
Murdin, B. N. ;
Page, H. ;
Marcadet, X. ;
Sirtori, C. ;
Tomic, S. .
APPLIED PHYSICS LETTERS, 2006, 89 (22)
[8]   High-pressure studies of recombination mechanisms in 1.3-μm GaInNAs quantum-well lasers [J].
Jin, SR ;
Sweeney, SJ ;
Tomic, S ;
Adams, AR ;
Riechert, H .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2003, 9 (05) :1196-1201
[9]   Evidence of carrier leakage into the L-valley in InAs-based quantum cascade lasers under high hydrostatic pressure [J].
Marko, Igor P. ;
Adams, Alfred R. ;
Sweeney, Stephen J. ;
Teissier, Roland ;
Baranov, Alexei N. ;
Tomic, Stanko .
PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2009, 246 (03) :512-515
[10]   High-power short-wavelength quantum cascade lasers [J].
Masselink, WT ;
Semtsiv, MP ;
Dressler, S ;
Ziegler, M ;
Georgiev, N ;
Dekorsy, T ;
Helm, M .
Novel In-Plane Semiconductor Lasers IV, 2005, 5738 :13-24