MULTICRITICAL POINT IN THE ONE-DIMENSIONAL QUANTUM COMPASS MODEL

被引:3
|
作者
Aziziha, M. [1 ]
Motamedifar, M. [1 ]
Mahdavifar, S. [1 ]
机构
[1] Univ Guilan, Dept Phys, Rasht 413351914, Iran
来源
ACTA PHYSICA POLONICA B | 2013年 / 44卷 / 02期
关键词
Analytic expressions - Compass models - Critical exponent - Finite size scaling - Jordan-Wigner transformation - Magnetic phase diagrams - Multicritical point - Spin-spin correlation functions;
D O I
10.5506/APhysPolB.44.221
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The one-dimensional spin-1/2 quantum compass model is considered. There is a multicritical point in the ground state magnetic phase diagram of the model. By using the Jordan-Wigner transformation the diagonalized Hamiltonian is obtained and analytic expressions for the spin spin correlation functions are determined at the multicritical point. On the other hand, the critical exponent of the energy gap in the vicinity of the multicritical point is calculated by a practical finite size scaling approach. DOI:10.5506/APhysPolB.44.221
引用
收藏
页码:221 / 229
页数:9
相关论文
共 50 条
  • [21] Thermodynamic properties of the one-dimensional extended quantum compass model in the presence of a transverse field
    R. Jafari
    The European Physical Journal B, 2012, 85
  • [22] Geometric phase and the influence of the Dzyaloshinski-Moriya interaction in the one-dimensional quantum compass model
    Lu, J. M.
    Li, X. P.
    Wang, L. C.
    MODERN PHYSICS LETTERS B, 2015, 29 (25):
  • [23] Long-range string orders and topological quantum phase transitions in the one-dimensional quantum compass model
    Wang, Hai Tao
    Cho, Sam Young
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2015, 27 (01)
  • [24] Quantum phase transitions in exactly solvable one-dimensional compass models
    You, Wen-Long
    Horsch, Peter
    Oles, Andrzej M.
    PHYSICAL REVIEW B, 2014, 89 (10)
  • [25] Scaling behavior in a multicritical one-dimensional topological insulator
    Malard, M.
    Johannesson, H.
    Chen, W.
    PHYSICAL REVIEW B, 2020, 102 (20)
  • [27] Effects of Heisenberg perturbation on the ground-state properties of one-dimensional extended quantum compass model
    Liu, Guang-Hua
    Kong, Long-Juan
    Deng, Xiao-Yan
    You, Wen-Long
    SOLID STATE COMMUNICATIONS, 2015, 209 : 5 - 10
  • [28] Generalized point interactions in one-dimensional quantum mechanics
    Coutinho, FAB
    Nogami, Y
    Perez, JF
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (11): : 3937 - 3945
  • [29] Quantum entanglement and criticality in a one-dimensional deconfined quantum critical point
    Yang, Sheng
    Xu, Jing-Bo
    PHYSICAL REVIEW E, 2021, 104 (06)
  • [30] Variational model for one-dimensional quantum magnets
    Kudasov, Yu. B.
    Kozabaranov, R. V.
    PHYSICS LETTERS A, 2018, 382 (16) : 1120 - 1123