Lattictic non-archimedean random stability of ACQ functional equation

被引:33
作者
Cho, Yeol Je [2 ]
Saadati, Reza [1 ]
机构
[1] Islamic Azad Univ, Dept Math, Sci & Res Branch, Tehran, Iran
[2] Gyeongsang Natl Univ, Dept Math Educ & Rins, Chinju 660701, South Korea
基金
新加坡国家研究基金会;
关键词
Stability; Random normed space; Fixed point; Generalized Hyers-Ulam stability; Additive-cubic-quartic functional equation; Lattice; non-Archimedean normed spaces; ULAM-RASSIAS STABILITY; JENSEN; APPROXIMATION; MAPPINGS; BEHAVIOR;
D O I
10.1186/1687-1847-2011-31
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove the generalized Hyers-Ulam stability of the following additive-cubic-quartic functional equation 11f(x + 2y) + 11f(x - 2y) = 44f(x + y) + 44f(x - y) + 12f(3y) - 48f(2y) + 60f(y) - 66(x) (1) in various complete lattictic random normed spaces.
引用
收藏
页数:12
相关论文
共 51 条
[1]  
[Anonymous], 2009, J INEQUAL APPL, DOI DOI 10.1155/2009/214530
[2]  
[Anonymous], 2011, Probabilistic Metric Spaces
[3]  
[Anonymous], 1987, GEN INEQUALITIES
[4]  
[Anonymous], HYERS ULAM RASSIAS S
[5]  
[Anonymous], 1998, Stability of Functional Equations in Several Variables
[6]  
Aoki T., 1950, J. Math. Soc. Japan, V2, P64
[7]   On the Stability of Cubic Mappings and Quadratic Mappings in Random Normed Spaces [J].
Baktash, E. ;
Cho, Y. J. ;
Jalili, M. ;
Saadati, R. ;
Vaezpour, S. M. .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2008, 2008 (1)
[8]  
C adariu L., 2004, Grazer Mathematische Berichte, V346, P43
[9]   Fixed point methods for the generalized stability of functional equations in a single variable [J].
Cadariu, Liviu ;
Radu, Viorel .
FIXED POINT THEORY AND APPLICATIONS, 2008, 2008 (1)
[10]  
Cdariu L., 2003, J INEQUAL PURE APPL, V4, P4