Effect of Cations on the Electrochemical Conversion of CO2 to CO

被引:282
|
作者
Thorson, Michael R. [1 ]
Siil, Karl I. [1 ,2 ]
Kenis, Paul J. A. [1 ,2 ,3 ]
机构
[1] Univ Illinois, Dept Chem & Biomol Engn, Urbana, IL USA
[2] Univ Illinois, Ctr Nanoscale Chem Elect Mech Mfg Syst, Urbana, IL 61801 USA
[3] Kyushu Univ, Int Inst Carbon Neutral Energy Res WPI I2CNER, Fukuoka 812, Japan
关键词
CARBON-DIOXIDE; METAL-ELECTRODES; CU ELECTRODE; FORMIC-ACID; REDUCTION; METHANOL; ETHYLENE; ELECTROREDUCTION; TECHNOLOGIES; TEMPERATURE;
D O I
10.1149/2.052301jes
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
We investigate the influence of electrolyte composition on the electrochemical reduction of CO2 to CO in an electrochemical flow reactor. Specifically, we study the effect of alkali cations on the partial current densities of the two products: CO and H-2. We report that the presence of large cations such as cesium and rubidium in the electrolyte improves the partial current density for CO production. Furthermore, large cations suppress H-2 evolution, resulting in high faradaic yields for CO production. For example, with a large cation, specifically CsOH, a partial current density of 72 mA/cm(2) was obtained at a cathode potential of -1.62 V vs Ag/AgCl. In contrast, in the presence of a small cation, specifically sodium, a partial current density of only 49 mA/cm(2) was achieved at a much more negative cathode potential of -2.37 V vs Ag/AgCl, with NaBr. The effect of cation size on product selectivity for CO production can be explained by the interplay between the level of cation hydration and the extent of cation adsorption on Ag electrodes. (C) 2012 The Electrochemical Society. [DOI: 10.1149/2.052301jes] All rights reserved.
引用
收藏
页码:F69 / F74
页数:6
相关论文
共 50 条
  • [1] Scaling the Electrochemical Conversion of CO2 to CO
    Han, Kai
    Rowley, Ben C.
    Schellekens, Maarten P.
    Brugman, Sander
    de Heer, Michiel P.
    Keyzer, Lucas P. S.
    Corbett, Paul J.
    ACS ENERGY LETTERS, 2024, 9 (06): : 2800 - 2806
  • [2] Coupling electrochemical CO2 conversion with CO2 capture
    Ian Sullivan
    Andrey Goryachev
    Ibadillah A. Digdaya
    Xueqian Li
    Harry A. Atwater
    David A. Vermaas
    Chengxiang Xiang
    Nature Catalysis, 2021, 4 : 952 - 958
  • [3] Coupling electrochemical CO2 conversion with CO2 capture
    Sullivan, Ian
    Goryachev, Andrey
    Digdaya, Ibadillah A.
    Li, Xueqian
    Atwater, Harry A.
    Vermaas, David A.
    Xiang, Chengxiang
    NATURE CATALYSIS, 2021, 4 (11) : 952 - 958
  • [4] Electrochemical Reactors for CO2 Conversion
    Lin, Roger
    Guo, Jiaxun
    Li, Xiaojia
    Patel, Poojan
    Seifitokaldani, Ali
    CATALYSTS, 2020, 10 (05)
  • [5] CO2 capture and electrochemical conversion
    Reis Machado, Ana S.
    da Ponte, Manuel Nunes
    CURRENT OPINION IN GREEN AND SUSTAINABLE CHEMISTRY, 2018, 11 : 86 - 90
  • [6] Effect of CO2 concentration on the electrolytic conversion of CO2 to CO
    Liu, Zengcai
    Yang, Hongzhou
    Sajjad, Syed
    Kaczur, Jerry
    Masel, Richard
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257
  • [7] Supported catalysts for the efficient electrochemical conversion of CO2 to CO
    Ma, Sichao
    Thorson, Michael R.
    Kenis, Paul J. A.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 247
  • [8] Author Correction: Coupling electrochemical CO2 conversion with CO2 capture
    Ian Sullivan
    Andrey Goryachev
    Ibadillah A. Digdaya
    Xueqian Li
    Harry A. Atwater
    David A. Vermaas
    Chengxiang Xiang
    Nature Catalysis, 2022, 5 : 75 - 76
  • [9] Metal cations in CO2 assimilation and conversion by plants
    Sergey Shabala
    JOM, 2009, 61 : 28 - 34
  • [10] METAL CATIONS IN CO2 ASSIMILATION AND CONVERSION BY PLANTS
    Shabala, Sergey
    ENERGY TECHNOLOGY PERSPECTIVES: CONSERVATION, CARBON DIOXIDE REDUCTION AND PRODUCTION FROM ALTERNATIVE SOURCES, 2009, : 5 - 16