On the vertex-arboricity of planar graphs without 7-cycles

被引:33
作者
Huang, Danjun [2 ,3 ]
Shiu, Wai Chee [1 ]
Wang, Weifan [2 ]
机构
[1] Hong Kong Baptist Univ, Dept Math, Kowloon Tong, Hong Kong, Peoples R China
[2] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Peoples R China
[3] Soochow Univ, Dept Math, Suzhou 215006, Peoples R China
关键词
Vertex arboricity; Planar graph; Cycle; POINT-ARBORICITY;
D O I
10.1016/j.disc.2012.03.035
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The vertex arboricity nu a(G) of a graph G is the minimum number of colors the vertices can be labeled so that each color class induces a forest. It was well-known that nu a(G) <= 3 for every planar graph G. In this paper, we prove that nu a(G) <= 2 if G is a planar graph without 7-cycles. This extends a result in [A. Raspaud, W. Wang, On the vertex-arboricity of planar graphs, European J. Combin. 29 (2008) 1064-1075] that for each k is an element of {3, 4, 5, 6}, planar graphs G without k-cycles have va(G) <= 2. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:2304 / 2315
页数:12
相关论文
共 14 条
[1]  
Alavi Y, 1997, UTILITAS MATHEMATICA, V52, P43
[2]  
[Anonymous], 1979, Computers and Intractablity: A Guide to the Theory of NP-Completeness
[4]   VERTEX ARBORICITY AND MAXIMUM DEGREE [J].
CATLIN, PA ;
LAI, HJ .
DISCRETE MATHEMATICS, 1995, 141 (1-3) :37-46
[5]   Vertex and tree arboricities of graphs [J].
Chang, GJ ;
Chen, CY ;
Chen, YP .
JOURNAL OF COMBINATORIAL OPTIMIZATION, 2004, 8 (03) :295-306
[6]   POINT-ARBORICITY OF A GRAPH [J].
CHARTRAND, G ;
KRONK, HV ;
WALL, CE .
ISRAEL JOURNAL OF MATHEMATICS, 1968, 6 (02) :169-+
[7]   POINT-ARBORICITY OF PLANAR GRAPHS [J].
CHARTRAND, G ;
KRONK, HV .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY, 1969, 44 (176P) :612-+
[8]   PLANAR GRAPHS WITHOUT 7-CYCLES ARE 4-CHOOSABLE [J].
Farzad, Babak .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2009, 23 (03) :1179-1199
[9]  
KRONK HV, 1974, J LOND MATH SOC, V9, P459
[10]  
Lam PCB, 2001, ARS COMBINATORIA, V58, P121