Do Recommender Systems Make Social Media More Susceptible to Misinformation Spreaders?

被引:13
作者
Tommasel, Antonela [1 ]
Menczer, Filippo [2 ]
机构
[1] UNCPBA, CONICET, ISISTAN, Tandil, Argentina
[2] Indiana Univ, Observ Social Media, Bloomington, IN USA
来源
PROCEEDINGS OF THE 16TH ACM CONFERENCE ON RECOMMENDER SYSTEMS, RECSYS 2022 | 2022年
关键词
link prediction; social media; misinformation; diffusion models;
D O I
10.1145/3523227.3551473
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recommender systems are central to online information consumption and user-decision processes, as they help users find relevant information and establish newsocial relationships. However, recommenders could also (unintendedly) help propagate misinformation and increase the social influence of the spreading it. In this context, we study the impact of friend recommender systems on the social influence of misinformation spreaders on Twitter. To this end, we applied several user recommenders to a COVID-19 misinformation data collection. Then, we explore what-if scenarios to simulate changes in user misinformation spreading behaviour as an effect of the interactions in the recommended network. Our study shows that recommenders can indeed affect how misinformation spreaders interact with other users and influence them.
引用
收藏
页码:550 / 555
页数:6
相关论文
共 27 条
[1]  
Huberman BA, 2008, Arxiv, DOI arXiv:0812.1045
[2]  
Behzad Banafsheh, 2021, arXiv
[3]   Fast unfolding of communities in large networks [J].
Blondel, Vincent D. ;
Guillaume, Jean-Loup ;
Lambiotte, Renaud ;
Lefebvre, Etienne .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2008,
[4]   Nonlinear q-voter model [J].
Castellano, Claudio ;
Munoz, Miguel A. ;
Pastor-Satorras, Romualdo .
PHYSICAL REVIEW E, 2009, 80 (04)
[5]  
Cinus F., 2022, ICWSM, V16, P90, DOI [DOI 10.1609/ICWSM.V16I1.19275, 10.1609/icwsm.v16i1.19275]
[6]   Quantifying echo chamber effects in information spreading over political communication networks [J].
Cota, Wesley ;
Ferreira, Silvio C. ;
Pastor-Satorras, Romualdo ;
Starnini, Michele .
EPJ DATA SCIENCE, 2019, 8 (01)
[7]  
Fabbri F., 2022, P INT AAAI C WEB SOC, V16, P194, DOI DOI 10.1609/ICWSM.V16I1.19284
[8]  
Fernandez Miriam, 2020, P 14 ACM C REC SYST, V2758, P40
[9]  
Fernandez Miriam., 2021, Analysing the effect of recommendation algorithms on the amplification of misinformation
[10]  
Garimella K., 2018, ACM Trans. Soc. Comput, V1, P1, DOI DOI 10.1145/3140565