Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres

被引:1783
作者
Hensen, B. [1 ,2 ]
Bernien, H. [1 ,2 ]
Dreau, A. E. [1 ,2 ]
Reiserer, A. [1 ,2 ]
Kalb, N. [1 ,2 ]
Blok, M. S. [1 ,2 ]
Ruitenberg, J. [1 ,2 ]
Vermeulen, R. F. L. [1 ,2 ]
Schouten, R. N. [1 ,2 ]
Abellan, C. [3 ]
Amaya, W. [3 ]
Pruneri, V. [3 ,4 ]
Mitchell, M. W. [3 ,4 ]
Markham, M. [5 ]
Twitchen, D. J. [5 ]
Elkouss, D. [1 ]
Wehner, S. [1 ]
Taminiau, T. H. [1 ,2 ]
Hanson, R. [1 ,2 ]
机构
[1] Delft Univ Technol, QuTech, NL-2600 GA Delft, Netherlands
[2] Delft Univ Technol, Kavli Inst Nanosci, NL-2600 GA Delft, Netherlands
[3] Barcelona Inst Sci & Technol, ICFO Inst Ciencies Fotoniques, Castelldefels 08860, Barcelona, Spain
[4] ICREA, Barcelona 08010, Spain
[5] Element Six Innovat, Didcot OX11 0QR, Oxon, England
基金
欧洲研究理事会;
关键词
HERALDED ENTANGLEMENT; PHOTONS;
D O I
10.1038/nature15759
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
More than 50 years ago(1), John Bell proved that no theory of nature that obeys locality and realism(2) can reproduce all the predictions of quantum theory: in any local-realist theory, the correlations between outcomes of measurements on distant particles satisfy an inequality that can be violated if the particles are entangled. Numerous Bell inequality tests have been reported(3-13); however, all experiments reported so far required additional assumptions to obtain a contradiction with local realism, resulting in 'loopholes'(13-16). Here we report a Bell experiment that is free of any such additional assumption and thus directly tests the principles underlying Bell's inequality. We use an event-ready scheme(17-19) that enables the generation of robust entanglement between distant electron spins (estimated state fidelity of 0.92 +/- 0.03). Efficient spin read-out avoids the fair-sampling assumption (detection loophole(14,15)), while the use of fast random-basis selection and spin read-out combined with a spatial separation of 1.3 kilometres ensure the required locality conditions(13). We performed 245 trials that tested the CHSH-Bell inequality(20) S <= 2 and found S = 2.42 +/- 0.20 (where S quantifies the correlation between measurement outcomes). A null-hypothesis test yields a probability of at most P = 0.039 that a local-realist model for space-like separated sites could produce data with a violation at least as large as we observe, even when allowing for memory(16,21) in the devices. Our data hence imply statistically significant rejection of the local-realist null hypothesis. This conclusion may be further consolidated in future experiments; for instance, reaching a value of P = 0.001 would require approximately 700 trials for an observed S = 2.4. With improvements, our experiment could be used for testing less-conventional theories, and for implementing device-independent quantum-secure communication(22) and randomness certification(23,24).
引用
收藏
页码:682 / 686
页数:5
相关论文
共 32 条
[1]  
Abelian C., PREPRINT
[2]   Device-independent security of quantum cryptography against collective attacks [J].
Acin, Antonio ;
Brunner, Nicolas ;
Gisin, Nicolas ;
Massar, Serge ;
Pironio, Stefano ;
Scarani, Valerio .
PHYSICAL REVIEW LETTERS, 2007, 98 (23)
[3]   Violation of Bell's inequality in Josephson phase qubits [J].
Ansmann, Markus ;
Wang, H. ;
Bialczak, Radoslaw C. ;
Hofheinz, Max ;
Lucero, Erik ;
Neeley, M. ;
O'Connell, A. D. ;
Sank, D. ;
Weides, M. ;
Wenner, J. ;
Cleland, A. N. ;
Martinis, John M. .
NATURE, 2009, 461 (7263) :504-506
[4]   EXPERIMENTAL TEST OF BELL INEQUALITIES USING TIME-VARYING ANALYZERS [J].
ASPECT, A ;
DALIBARD, J ;
ROGER, G .
PHYSICAL REVIEW LETTERS, 1982, 49 (25) :1804-1807
[5]   Quantum nonlocality, Bell inequalities, and the memory loophole [J].
Barrett, J ;
Collins, D ;
Hardy, L ;
Kent, A ;
Popescu, S .
PHYSICAL REVIEW A, 2002, 66 (04) :9
[6]   Efficient high-fidelity quantum computation using matter qubits and linear optics [J].
Barrett, SD ;
Kok, P .
PHYSICAL REVIEW A, 2005, 71 (06)
[7]  
Bell J. S., 1964, Physics, V1, P195, DOI [10.1103/physicsphysiquefizika.1.195, DOI 10.1103/PHYSICSPHYSIQUEFIZIKA.1.195, 10.1103/Physics-PhysiqueFizika.1.195]
[8]  
Bell J.S., 1993, Speakable and unspeakable in quantum mechanics: collected papers on quantum philosophy
[9]  
Bell John Stewart, 1980, Commen. At. Mol. Phys., V9, P121
[10]   Heralded entanglement between solid-state qubits separated by three metres [J].
Bernien, H. ;
Hensen, B. ;
Pfaff, W. ;
Koolstra, G. ;
Blok, M. S. ;
Robledo, L. ;
Taminiau, T. H. ;
Markham, M. ;
Twitchen, D. J. ;
Childress, L. ;
Hanson, R. .
NATURE, 2013, 497 (7447) :86-90