Directing Selectivity of Electrochemical Carbon Dioxide Reduction Using Plasmonics

被引:73
作者
Creel, Erin B. [1 ,2 ,3 ]
Corson, Elizabeth R. [1 ,4 ]
Eichhorn, Johanna [1 ]
Kostecki, Robert [1 ,5 ]
Urban, Jeffrey J. [1 ,3 ]
McCloskey, Bryan D. [1 ,4 ,5 ]
机构
[1] Lawrence Berkeley Natl Lab, Joint Ctr Artificial Photosynth, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA
[3] Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA
[4] Univ Calif Berkeley, Dept Chem & Biomol Engn, 201 Gilman Hall, Berkeley, CA 94720 USA
[5] Lawrence Berkeley Natl Lab, Energy Storage & Distributed Resources Div, Berkeley, CA 94720 USA
基金
美国国家科学基金会;
关键词
SOLAR; CO2; CONVERSION; ENERGY; PHOTOCATALYSIS; ABSORPTION; MECHANISM; INSIGHTS; GOLD;
D O I
10.1021/acsenergylett.9b00515
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Catalysts for electrochemical carbon dioxide reduction in aqueous electrolytes suffer from high energy input requirements, competition with hydrogen evolution from water reduction, and low product selectivity. Theory suggests that plasmonic catalysts can be tuned to selectively lower the energy barrier for a specific reaction in a set of competitive reactions, but there has been little experimental evidence demonstrating plasmon driven selectivity in complicated multielectron electrochemical processes. Here, the photoactivity at a plasmonically active silver thin film electrode at small cathodic potentials selectively generates carbon monoxide while simultaneously suppressing hydrogen production. At larger cathodic potentials, the photoactivity promotes production of methanol and formate. Methanol production is observed only under illumination, not in dark conditions. The preference of the plasmonic activity for carbon dioxide reduction over hydrogen evolution and the ability to tune plasmonic activity with voltage demonstrates that plasmonics provide a promising approach to promote complex electrochemical reactions over other competing reactions.
引用
收藏
页码:1098 / 1105
页数:15
相关论文
共 32 条
[1]   THE EVALUATION OF SURFACE-DIFFUSION COEFFICIENTS OF GOLD AND PLATINUM ATOMS AT ELECTROCHEMICAL INTERFACES FROM COMBINED STM-SEM IMAGING AND ELECTROCHEMICAL TECHNIQUES [J].
ALONSO, C ;
SALVAREZZA, RC ;
VARA, JM ;
ARVIA, AJ ;
VAZQUEZ, L ;
BARTOLOME, A ;
BARO, AM .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1990, 137 (07) :2161-2166
[2]   Catalytic conversion of solar to chemical energy on plasmonic metal nanostructures [J].
Aslam, Umar ;
Rao, Vishal Govind ;
Chavez, Steven ;
Linic, Suljo .
NATURE CATALYSIS, 2018, 1 (09) :656-665
[3]   Mechanism of Charge Transfer from Plasmonic Nanostructures to Chemically Attached Materials [J].
Boerigter, Calvin ;
Aslam, Umar ;
Linic, Suljo .
ACS NANO, 2016, 10 (06) :6108-6115
[4]   Evidence and implications of direct charge excitation as the dominant mechanism in plasmon-mediated photocatalysis [J].
Boerigter, Calvin ;
Campana, Robert ;
Morabito, Matthew ;
Linic, Suljo .
NATURE COMMUNICATIONS, 2016, 7
[5]  
Brongersma ML, 2015, NAT NANOTECHNOL, V10, P25, DOI [10.1038/NNANO.2014.311, 10.1038/nnano.2014.311]
[6]   A temperature-controlled photoelectrochemical cell for quantitative product analysis [J].
Corson, Elizabeth R. ;
Creel, Erin B. ;
Kim, Youngsang ;
Urban, Jeffrey J. ;
Kostecki, Robert ;
McCloskey, Bryan D. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2018, 89 (05)
[7]   Hot Hole Collection and Photoelectrochemical CO2 Reduction with Plasmonic Au/p-GaN Photocathodes [J].
DuChene, Joseph S. ;
Tagliabue, Giulia ;
Welch, Alex J. ;
Cheng, Wen-Hui ;
Atwater, Harry A. .
NANO LETTERS, 2018, 18 (04) :2545-2550
[8]   Insights into the electrocatalytic reduction of CO2 on metallic silver surfaces [J].
Hatsukade, Toru ;
Kuhl, Kendra P. ;
Cave, Etosha R. ;
Abram, David N. ;
Jaramillo, Thomas F. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2014, 16 (27) :13814-13819
[9]   Reactions at metal surfaces induced by femtosecond lasers, tunneling electrons, and heating [J].
Ho, W .
JOURNAL OF PHYSICAL CHEMISTRY, 1996, 100 (31) :13050-13060
[10]  
Hori Y, 2008, MOD ASP ELECTROCHEM, P89