DISPERSION FLATTENED PHOTONIC CRYSTAL FIBERS FOR SUPERCONTINUUM GENERATION IN A TELECOMMUNICATION WINDOW

被引:0
作者
Hossain, Md. Anwar [1 ]
Namihira, Yoshinori [1 ]
Liu, Jingjing [2 ]
Razzak, S. M. Abdur [3 ]
Islam, Md. Asraful [4 ]
Hirako, Yuki [1 ]
Miyagi, Kazuya [1 ]
Nozaki, Shinya [5 ]
机构
[1] Univ Ryukyus, Grad Sch Engn & Sci, 1 Senbaru, Nishihara, Okinawa 9030213, Japan
[2] Dalian Polytech Univ, Res Inst Photon, Dalian 116034, Peoples R China
[3] Rajshahi Univ Engn & Technol, Dept EEE, Rajshahi 6204, Bangladesh
[4] Bangladesh Govt Serv, Publ Works Dept, Dhaka, Bangladesh
[5] Univ Ryukyus, Transdiciplinary Res Org Subtrop & Isl Studies, Nishihara, Okinawa 90301, Japan
来源
PROCEEDINGS OF 2011 INTERNATIONAL CONFERENCE ON COMMUNICATION TECHNOLOGY AND APPLICATION, ICCTA2011 | 2011年
关键词
photonic crystal fiber (PCF); nonlinear fiber optics; chromatic dispersion (D); telecommunication window; supercontinuum (SC); ULTRAFLATTENED DISPERSION; POLARIZATION PROPERTIES; OPTICAL-FIBER; PULSES; BAND;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A dispersion flattened photonic crystal fiber (PCF) having nonlinear coefficient 13.8 W(-1)km(-1) at 1.55 mu m is proposed in this paper to generate supercontinuum (SC) in a telecommunication window (wavelength 1.45 mu m to 1.65 mu m). As this PCF has an ultra-flattened dispersion and near zero dispersion slope at the center wavelength 1.55 mu m, simulation results show that this simple PCF offers the possibility to generate the SC spectrum at telecommunication window using picosecond pulse easily produced by less expensive laser sources. Moreover, this PCF also provides very low confinement loss in entire operating window.
引用
收藏
页码:815 / 818
页数:4
相关论文
共 50 条
[21]   Highly birefringent photonic crystal fibers with flattened dispersion and low effective mode area [J].
Liang, Jian ;
Yun, Maojin ;
Kong, Weijin ;
Sun, Xin ;
Zhang, Wenfei ;
Xi, Sixing .
OPTIK, 2011, 122 (23) :2151-2154
[22]   Design Approach of Liquid-filled Dispersion-flattened Photonic Crystal Fibers [J].
Hsu, Jui-Ming ;
Ye, Der-Li .
PIERS 2011 SUZHOU: PROGRESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM, 2011, :110-113
[23]   Design of photonic crystal fibers with flat dispersion and three zero dispersion wavelengths for coherent supercontinuum generation in both normal and anomalous regions [J].
Huang, Ying ;
Yang, Hua ;
Zhao, Saili ;
Mao, Yucheng ;
Chen, Shuyuan .
RESULTS IN PHYSICS, 2021, 23
[24]   Supercontinuum Generation in Highly Nonlinear Low-Dispersion Photonic Crystal Fiber [J].
Xu, Qiang ;
Zhao, Ya ;
Wang, Miao ;
Zhang, Yani ;
Hao, Bojuan .
INTERNATIONAL CONFERENCE ON OPTICAL AND PHOTONICS ENGINEERING (ICOPEN 2016), 2017, 10250
[25]   Supercontinuum generation in polarization maintaining photonic crystal fibers using nanosecond pulses [J].
Yu, Yi ;
Zhang, Ying ;
Zhang, Bin ;
Wang, Zefeng .
2011 ASIA COMMUNICATIONS AND PHOTONICS CONFERENCE AND EXHIBITION (ACP), 2012,
[26]   Supercontinuum generation in polarization maintaining photonic crystal fibers using nanosecond pulses [J].
Yu, Yi ;
Zhang, Ying ;
Zhang, Bin ;
Wang, Zefeng .
PASSIVE COMPONENTS AND FIBER-BASED DEVICES VIII, 2011, 8307
[27]   Effect of Dispersion on Dispersive Wave Generation in Photonic Crystal Fibers [J].
Cheng, Chunfu ;
Ou, Yiwen ;
Bie, Yeguang ;
Min, Rui .
JOURNAL OF INFRARED MILLIMETER AND TERAHERTZ WAVES, 2009, 30 (06) :580-588
[28]   Design of Highly Nonlinear Dispersion Flattened Hexagonal Photonic Crystal Fibers for Dental Optical Coherence Tomography Applications [J].
Namihira, Yoshinori ;
Hossain, Md Anwar ;
Koga, Taito ;
Islam, Md Ashraful ;
Razzak, S. M. Abdur ;
Kaijage, Shubi F. ;
Hirako, Yuki ;
Higa, Hiroki .
OPTICAL REVIEW, 2012, 19 (02) :78-81
[29]   Interlayer air-hole photonic crystal fiber with flat dispersion and three zero dispersion wavelengths for supercontinuum generation [J].
Ding, Kefeng ;
Ye, Lihua ;
Lu, Chunguang ;
Zhao, Yujie ;
Yan, Dapeng .
OPTICAL FIBER TECHNOLOGY, 2025, 89
[30]   Dispersion Tailoring in Circular Photonic Crystal Fibers for Ultraflattened Dispersion [J].
Mondal, Kajal ;
Chaudhuri, Partha Roy .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2018, 30 (10) :951-954