Symmetry structures and conservation laws of Petrov III and Papapetrou metrics

被引:3
作者
Bokhari, A. H. [1 ]
Zaman, F. D. [1 ]
Narain, R. [2 ,3 ]
Kara, A. H. [4 ]
机构
[1] King Fahd Univ Petr & Minerals, Dept Math & Stat, Dhahran 31261, Saudi Arabia
[2] Univ Kwazulu Natal, Astrophys & Cosmol Res Unit, Durban, South Africa
[3] Univ Kwazulu Natal, Sch Math Sci, Durban, South Africa
[4] Univ Witwatersrand, Sch Math, Johannesburg, South Africa
关键词
Conservation laws; Noether symmetries; Petrov and Papapetrou metrics; PERFECT FLUID; SPACETIMES;
D O I
10.1007/s12648-013-0283-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, Noether symmetries of some spacetime metrics are studied. Considering invariance of the action integral under one parameter Lie group of transformations, it is shown that a large class of Noether symmetries is found. In particular, it is shown that the isometries form a sub-Lie algebra of Noether symmetries.
引用
收藏
页码:717 / 722
页数:6
相关论文
共 16 条
  • [1] [Anonymous], 2020, Introduction to Partial Differential Equations
  • [2] [Anonymous], 1951, Proc. Natl. Inst. Sci. India A, DOI DOI 10.1023/A:1018875606950]
  • [3] Approximate solutions of the Klein-Gordon equation with unequal scalar and vector modified Hylleraas potential
    Antia, A. D.
    Ikot, A. N.
    Akpan, I. O.
    Awoga, O. A.
    [J]. INDIAN JOURNAL OF PHYSICS, 2013, 87 (02) : 155 - 160
  • [4] Homothetic perfect fluid spacetimes
    Carot, J
    Sintes, AM
    [J]. CLASSICAL AND QUANTUM GRAVITY, 1997, 14 (05) : 1183 - 1205
  • [5] A classical approach to dyons in six-dimensional space-time
    Chaudhary, P.
    Rajput, B. S.
    [J]. INDIAN JOURNAL OF PHYSICS, 2011, 85 (12) : 1843 - 1852
  • [6] ON THE NATURE OF NAKED SINGULARITIES IN VAIDYA SPACETIMES
    DWIVEDI, IH
    JOSHI, PS
    [J]. CLASSICAL AND QUANTUM GRAVITY, 1989, 6 (11) : 1599 - 1606
  • [7] PAST-FUTURE ASYMMETRY OF THE GRAVITATIONAL FIELD OF A POINT PARTICLE
    FINKELSTEIN, D
    [J]. PHYSICAL REVIEW, 1958, 110 (04): : 965 - 967
  • [8] Kobayashi S., 1972, Transformation Groups in Differential Geometry
  • [9] Kramer D., 1980, Exact Solutions of Einsteins Field Equations
  • [10] VAIDYAS RADIATING SCHWARZSCHILD METRIC
    LINDQUIST, RW
    SCHWARTZ, RA
    [J]. PHYSICAL REVIEW, 1965, 137 (5B): : 1364 - +