The non-Abelian density matrix renormalization group algorithm

被引:215
作者
McCulloch, IP [1 ]
Gulácsi, M [1 ]
机构
[1] Australian Natl Univ, Inst Adv Studies, Dept Theoret Phys, Canberra, ACT 0200, Australia
来源
EUROPHYSICS LETTERS | 2002年 / 57卷 / 06期
关键词
D O I
10.1209/epl/i2002-00393-0
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We describe here the extension of the density matrix renormalization group algorithm to the case where the Hamiltonian has a non-Abelian global symmetry group. The block states transform as irreducible representations of the non-Abelian group. Since the representations are multi-dimensional, a single block state in the new representation corresponds to multiple states of the original density matrix renormalization group basis. We demonstrate the usefulness of the construction via the one-dimensional Hubbard model as the symmetry group is enlarged from U(1) x U(1), up to SU(2) x SU(2).
引用
收藏
页码:852 / 858
页数:7
相关论文
共 25 条
[1]  
Baxter R. J., 2007, EXACTLY SOLVED MODEL
[2]  
Biedenharn L. S., 1981, ANGULAR MOMENTUM QUA
[3]   First and second order ferromagnetic transition at T=0 in a 1D itinerant system [J].
Daul, S .
EUROPEAN PHYSICAL JOURNAL B, 2000, 14 (04) :649-653
[4]   Ferromagnetic transition and phase diagram of the one-dimensional Hubbard model with next-nearest-neighbor hopping [J].
Daul, S ;
Noack, RM .
PHYSICAL REVIEW B, 1998, 58 (05) :2635-2650
[5]   EFFECT OF CORRELATION ON FERROMAGNETISM OF TRANSITION METALS [J].
GUTZWILLER, MC .
PHYSICAL REVIEW LETTERS, 1963, 10 (05) :159-&
[7]  
KOREPIN VE, 1995, NATO ASI SER B, V343
[8]   Density matrix renormalization group algorithm and the two-dimensional t-J model [J].
Gulacsi, Mikols ;
McCulloch, I.P. ;
Bishop, A.R. .
Philosophical Magazine B: Physics of Condensed Matter; Statistical Mechanics, Electronic, Optical and Magnetic Properties, 2001, 81 (10 SPEC.) :1603-1613
[9]   Density matrix renormalisation group method and symmetries of the Hamiltonian [J].
McCulloch, IP ;
Gulácsi, M .
AUSTRALIAN JOURNAL OF PHYSICS, 2000, 53 (04) :597-612
[10]   Ferromagnetism in Kondo lattice models [J].
McCulloch, IP ;
Juozapavicius, A ;
Rosengren, A ;
Gulácsi, M .
PHILOSOPHICAL MAGAZINE LETTERS, 2001, 81 (12) :869-875