Surface interpolation by adaptive Neuro-Fuzzy Inference System based local Ordinary Kriging

被引:0
|
作者
Özkan, C
机构
[1] Erciyes Univ, Inst Sci, Comp Engn Dept, TR-38039 Kayseri, Turkey
[2] Erciyes Univ, Engn Fac, Geodesy Photogrammetry Eng Dept, TR-38039 Kayseri, Turkey
来源
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A new approach to the Ordinary Kriging interpolation method based on the combination of local interpolation and variogram modelling with Adaptive Neuro-Fuzzy Inference System (ANFIS) is proposed for surface interpolation. In this method, the experimental variogram is modelled by ANFIS and this model is used to interpolate the unknown values of specific points in a new local manner. In this local way, all the unknown points are grouped based on each reference point. As the study data, two types of data sets coming from mathematical functions and a 3D scanning system are used. The tests show that the proposed method produces better performances for all data sets in comparison to the well known and highly approved interpolation methods; Ordinary Kriging, Triangle Based Cubic and Radial Basis Function-Multiquadric. Moreover, by the proposed method the computational complexity impressively decreases compared to the global Ordinary Kriging.
引用
收藏
页码:196 / 205
页数:10
相关论文
共 50 条
  • [31] Neuro-Fuzzy Evaluation of the Software Reliability Models by Adaptive Neuro Fuzzy Inference System
    Milos Milovancevic
    Aleksandar Dimov
    Kamen Boyanov Spasov
    Ljubomir Vračar
    Miroslav Planić
    Journal of Electronic Testing, 2021, 37 : 439 - 452
  • [32] Adaptive Neuro-Fuzzy Inference System in Fuzzy Measurement to Track Association
    Tafti, Abdolreza Dehghani
    Sadati, Nasser
    JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 2010, 132 (02): : 1 - 8
  • [33] Neuro-Fuzzy Evaluation of the Software Reliability Models by Adaptive Neuro Fuzzy Inference System
    Milovancevic, Milos
    Dimov, Aleksandar
    Spasov, Kamen Boyanov
    Vracar, Ljubomir
    Planic, Miroslav
    JOURNAL OF ELECTRONIC TESTING-THEORY AND APPLICATIONS, 2021, 37 (04): : 439 - 452
  • [34] Grid Company Risk Management System Based on Adaptive Neuro-Fuzzy Inference
    Khalyasmaa, A. I.
    Dmitriev, S. A.
    Valiev, R. T.
    PROCEEDINGS OF 2017 XX IEEE INTERNATIONAL CONFERENCE ON SOFT COMPUTING AND MEASUREMENTS (SCM), 2017, : 892 - 895
  • [35] Classification of Digital Communication Signals Based on Adaptive Neuro-fuzzy Inference System
    Azami, Hamed
    Azarbad, Milad
    Sanei, Saeid
    2013 21ST IRANIAN CONFERENCE ON ELECTRICAL ENGINEERING (ICEE), 2013,
  • [36] An optimization of a planning information system using fuzzy inference system and adaptive neuro-Fuzzy inference system
    1600, World Scientific and Engineering Academy and Society, Ag. Ioannou Theologou 17-23, Zographou, Athens, 15773, Greece (10):
  • [37] Trajectory Tracking Control of a Manipulator Based on an Adaptive Neuro-Fuzzy Inference System
    Han, Jiangyi
    Wang, Fan
    Sun, Chenxi
    APPLIED SCIENCES-BASEL, 2023, 13 (02):
  • [38] Robust Speed Controller of PMSM based on Adaptive Neuro-Fuzzy Inference System
    Pajchrowski, Tomasz
    Zawirski, Krzysztof
    PRZEGLAD ELEKTROTECHNICZNY, 2009, 85 (08): : 12 - 17
  • [39] Adaptive Neuro-Fuzzy Inference System Based Path Planning for Excavator Arm
    Nga Thi-Thuy Vu
    Nam Phuong Tran
    Nam Hoai Nguyen
    JOURNAL OF ROBOTICS, 2018, 2018
  • [40] Flexible positioning of secondary attackers based on adaptive neuro-fuzzy inference system
    Zhang, Gang
    Huang, Hong
    Ren, Xue-Mei
    Kongzhi Lilun Yu Yingyong/Control Theory and Applications, 2004, 21 (SUPPL.): : 15 - 18