Bayesian hierarchical model-based prognostics for lithium-ion batteries

被引:56
|
作者
Mishra, Madhav [1 ,2 ]
Martinsson, Jesper [3 ]
Rantatalo, Matti [2 ]
Goebel, Kai [4 ]
机构
[1] Lulea Univ Technol, SKF Univ Technol Ctr, S-97187 Lulea, Sweden
[2] Lulea Univ Technol, Div Operat & Maintenance Engn, S-97187 Lulea, Sweden
[3] Lulea Univ Technol, Div Math Sci, S-97187 Lulea, Sweden
[4] NASA, Ames Res Ctr, Intelligent Syst Div, Moffett Field, CA 94035 USA
关键词
Bayesian hierarchical model; Prognostics; End of discharge; Lithium-ion battery; REMAINING USEFUL LIFE; ALGORITHMS; PERFORMANCE; DEGRADATION; FRAMEWORK;
D O I
10.1016/j.ress.2017.11.020
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
To optimise operation and maintenance, knowledge of the ability to perform the required functions is vital. The ability is governed by the usage of the system (operational issues) and availability aspects like reliability of different components. This paper proposes a Bayesian hierarchical model (BHM)-based prognostics approach applied to Li-ion batteries, where the goal is to analyse and predict the discharge behaviour of such batteries with variable load profiles and variable amounts of available discharge data. The BHM approach enables inferences for both individual batteries and groups of batteries. Estimates of the hierarchical model parameters and the individual battery parameters are presented, and dependencies on load cycles are inferred. A BHM approach where the operational and reliability aspects end of life (EoD) and end of life (EoL) is studied where its shown that predictions of EoD can be made accurately with a variable amount of battery data. Without access to measurements, e.g. predicting a new battery, the predictions are based only on the prior distributions describing the similarity within the group of batteries and their dependency on the load cycle. A discharge cycle dependency can also be identified in the result giving the opportunity to predict the battery reliability. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:25 / 35
页数:11
相关论文
共 50 条
  • [21] Model-Based End of Discharge Temperature Prediction for Lithium-Ion Batteries
    Faraji-Niri, Mona
    Bui, Truong M. N.
    Yu, Tung Fai
    Marco, James
    IFAC PAPERSONLINE, 2020, 53 (02): : 12701 - 12707
  • [22] A novel model-based damage detection method for lithium-ion batteries
    Yang, Zichuan
    Li, Junqiu
    Jiang, Haifu
    Liu, Ziming
    JOURNAL OF ENERGY STORAGE, 2021, 42
  • [23] Prognostics of Lithium-ion Batteries Based on Flexible Support Vector Regression
    Wang, Shuai
    Zhao, Lingling
    Su, Xiaohong
    Ma, Peijun
    PROCEEDINGS OF 2014 PROGNOSTICS AND SYSTEM HEALTH MANAGEMENT CONFERENCE (PHM-2014 HUNAN), 2014, : 317 - 322
  • [24] Robust prognostics for state of health estimation of lithium-ion batteries based on an improved PSO-SVR model
    Qin, Taichun
    Zeng, Shengkui
    Guo, Jianbin
    MICROELECTRONICS RELIABILITY, 2015, 55 (9-10) : 1280 - 1284
  • [25] Prognostics of Lithium-Ion Batteries Based on the Verhulst Model, Particle Swarm Optimization and Particle Filter
    Xian, Weiming
    Long, Bing
    Li, Min
    Wang, Houjun
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2014, 63 (01) : 2 - 17
  • [26] A review of Bayesian-filtering-based techniques in RUL prediction for Lithium-Ion batteries
    Khine, May Htet Htet
    Kim, Cheong Ghil
    Aunsri, Nattapol
    JOURNAL OF ENERGY STORAGE, 2025, 111
  • [27] Physics-Informed Neural Networks for Prognostics and Health Management of Lithium-Ion Batteries
    Wen, Pengfei
    Ye, Zhi-Sheng
    Li, Yong
    Chen, Shaowei
    Xie, Pu
    Zhao, Shuai
    IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, 2024, 9 (01): : 2276 - 2289
  • [28] State of Health Prediction of Lithium-Ion Batteries Based on the Discharge Voltage and Temperature
    Yang, Yanru
    Wen, Jie
    Shi, Yuanhao
    Zeng, Jianchao
    ELECTRONICS, 2021, 10 (12)
  • [29] A review on prognostics and health management (PHM) methods of lithium-ion batteries
    Meng, Huixing
    Li, Yan-Fu
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2019, 116
  • [30] Bayesian parameter identification in electrochemical model for lithium-ion batteries
    Kim, Seongyoon
    Kim, Sanghyun
    Choi, Yun Young
    Choi, Jung-Il
    JOURNAL OF ENERGY STORAGE, 2023, 71