共 50 条
Probabilistic solar irradiance forecasting via a deep learning-based hybrid approach
被引:16
作者:
He, Hui
[1
]
Lu, Nanyan
[1
]
Jie, Yongjun
[1
]
Chen, Bo
[2
]
Jiao, Runhai
[1
]
机构:
[1] North China Elect Power Univ, Sch Control & Comp Engn, 2 Beinong Rd, Beijing 102206, Peoples R China
[2] China Unicom Big Data Co Ltd, Beijing 100011, Peoples R China
关键词:
probabilistic forecasting;
long short-term memory;
solar irradiance;
residual modeling;
POWER OUTPUT;
PREDICTION;
MODEL;
D O I:
10.1002/tee.23231
中图分类号:
TM [电工技术];
TN [电子技术、通信技术];
学科分类号:
0808 ;
0809 ;
摘要:
Probabilistic solar irradiance forecasting has received widespread attention in recent years, as it provides more uncertainty information for the future photovoltaic generation. In this study, a hybrid probabilistic solar irradiance prediction method is proposed, which combines a deep recurrent neural network and residual modeling. Specifically, the long short-term memory-based point prediction using historical records and related features is applied to obtain deterministic forecasts. Next, these deterministic forecasts are employed as inputs to estimate the residual distributions. Furthermore, maximum likelihood estimation is utilized to compute the parameters of the residual distribution. Finally, the point prediction and residual distribution jointly generate the final probabilistic forecasting results. Compared with other deterministic and probabilistic forecasting models, the proposed method yields promising results on a publicly available dataset. (c) 2020 Institute of Electrical Engineers of Japan. Published by Wiley Periodicals LLC.
引用
收藏
页码:1604 / 1612
页数:9
相关论文
共 50 条