Noncooperative and Cooperative Optimization of Distributed Energy Generation and Storage in the Demand-Side of the Smart Grid

被引:117
|
作者
Atzeni, Italo [1 ]
Ordonez, Luis G. [1 ]
Scutari, Gesualdo [2 ]
Palomar, Daniel P. [3 ,4 ]
Fonollosa, Javier R. [1 ]
机构
[1] Univ Politecn Catalunya Barcelona Tech, Signal Proc & Commun Grp, Barcelona 08034, Spain
[2] SUNY Buffalo, Dept Elect Engn, Buffalo, NY 14260 USA
[3] Hong Kong Univ Sci & Technol, Dept Elect & Comp Engn, Kowloon, Hong Kong, Peoples R China
[4] Hong Kong Univ Sci & Technol, Inst Adv Study, Kowloon, Hong Kong, Peoples R China
基金
美国国家科学基金会;
关键词
Demand-side management; distributed pricing algorithm; game theory; proximal decomposition algorithm; smart grid; variational inequality;
D O I
10.1109/TSP.2013.2248002
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The electric energy distribution infrastructure is undergoing a startling technological evolution with the development of the smart grid concept, which allows more interaction between the supply-and the demand-side of the network and results in a great optimization potential. In this paper, we focus on a smart grid in which the demand-side comprises traditional users as well as users owning some kind of distributed energy source and/or energy storage device. By means of a day-ahead demand-side management mechanism regulated through an independent central unit, the latter users are interested in reducing their monetary expense by producing or storing energy rather than just purchasing their energy needs from the grid. Using a general energy pricing model, we tackle the grid optimization design from two different perspectives: a user-oriented optimization and an holistic-based design. In the former case, we optimize each user individually by formulating the grid optimization problem as a noncooperative game, whose solution analysis is addressed building on the theory of variational inequalities. In the latter case, we focus instead on the joint optimization of the whole system, allowing some cooperation among the users. For both formulations, we devise distributed and iterative algorithms providing the optimal production/storage strategies of the users, along with their convergence properties. Among all, the proposed algorithms preserve the users' privacy and require very limited signaling with the central unit.
引用
收藏
页码:2454 / 2472
页数:19
相关论文
共 50 条
  • [31] An Artificial Immune Network for Distributed Demand-Side Management in Smart Grids
    Lizondo, Diego
    Rodriguez, Sebastian
    Will, Adrian
    Jimenez, Victor
    Gotay, Jorge
    INFORMATION SCIENCES, 2018, 438 : 32 - 45
  • [32] Demand-Side Energy Management in an Administrative Building by Considering Generation Optimization
    Motevakel, Pooriya
    Ghanbari, Behrad
    Abedi, Mehrdad
    Hosseinian, Seyed Hossein
    2018 SMART GRID CONFERENCE (SGC), 2018, : 125 - 130
  • [33] Efficient Optimization Algorithm-Based Demand-Side Management Program for Smart Grid Residential Load
    Jasim, Ali M.
    Jasim, Basil H.
    Neagu, Bogdan-Constantin
    Alhasnawi, Bilal Naji
    AXIOMS, 2023, 12 (01)
  • [34] Demand Response Program for Efficient Demand-Side Management in Smart Grid Considering Renewable Energy Sources
    Ali, Sajjad
    Rehman, Ateeq Ur
    Wadud, Zahid
    Khan, Imran
    Murawwat, Sadia
    Hafeez, Ghulam
    Albogamy, Fahad R.
    Khan, Sheraz
    Samuel, Omaji
    IEEE ACCESS, 2022, 10 : 53832 - 53853
  • [35] Upper-Middleware Development of Smart Energy Profile 2.0 for Demand-Side Communications in Smart Grid
    Lu, Yaqi
    Ding, Yuemin
    Duan, Quanzhen
    Li, Xiaohui
    Tian, Yu-Chu
    IECON 2018 - 44TH ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, 2018, : 306 - 310
  • [36] A comprehensive review of demand-side management in smart grid operation with electric vehicles
    Ghorpade, Satish Jagannath
    Sharma, Rajesh B.
    ELECTRICAL ENGINEERING, 2024, 106 (05) : 6495 - 6514
  • [37] Structural Design of a Universal and Efficient Demand-Side Management System for Smart Grid
    Lei, Peng
    Ma, Jiong
    Jin, Peng
    Lv, Hao
    Shen, Lei
    2012 POWER ENGINEERING AND AUTOMATION CONFERENCE (PEAM), 2012, : 384 - 389
  • [38] Energy flexible building through smart demand-side management and latent heat storage
    Lizana, Jesus
    Friedrich, Daniel
    Renaldi, Renaldi
    Chacartegui, Ricardo
    APPLIED ENERGY, 2018, 230 : 471 - 485
  • [39] A User Perspective Optimization Scheme for Demand-Side Energy Management
    Viani, F.
    Salucci, M.
    IEEE SYSTEMS JOURNAL, 2018, 12 (04): : 3857 - 3860
  • [40] OPtimization of Home Energy Management System in Smart Grid for Effective Demand Side Management
    Anzar, Mahmood
    Iqra, Rafiq
    Kousar, Anila
    Ejaz, Shafaq
    Alvarez-Alvarado, Manuel S.
    Zafar, A. Khan
    PROCEEDINGS OF 2017 INTERNATIONAL RENEWABLE & SUSTAINABLE ENERGY CONFERENCE (IRSEC' 17), 2017, : 712 - 717