Uniformly Interconnected Silver-Nanowire Networks for Transparent Film Heaters

被引:422
作者
Kim, TaeYoung [1 ]
Kim, Yeon Won [2 ]
Lee, Ho Seok [2 ]
Kim, Hyeongkeun [1 ]
Yang, Woo Seok [1 ]
Suh, Kwang S. [2 ]
机构
[1] Korea Elect Technol Inst, Songnam 463816, Gyeonggi Do, South Korea
[2] Korea Univ, Dept Mat Sci & Engn, Seoul 136713, South Korea
关键词
silver nanowires; transparent electrodes; film heaters; flexible devices; scalable coatings;
D O I
10.1002/adfm.201202013
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The fabrication and design principles for using silver-nanowire (AgNW) networks as transparent electrodes for flexible film heaters are described. For best practice, AgNWs are synthesized with a small diameter and network structures of the AgNW films are optimized, demonstrating a favorably low surface resistivity in transparent layouts with a high figure-of-merit value. To explore their potential in transparent electrodes, a transparent film heater is constructed based on uniformly interconnected AgNW networks, which yields an effective and rapid heating of the film at low input voltages. In addition, the AgNW-based film heater is capable of accommodating a large amount of compressive or tensile strains in a completely reversible fashion, thereby yielding an excellent mechanical flexibility. The AgNW networks demonstrated here possess attractive features for both conventional and emerging applications of transparent flexible electrodes.
引用
收藏
页码:1250 / 1255
页数:6
相关论文
共 32 条
  • [1] Kumar A., Zhou C., ACS Nano, 4, pp. 11-14, (2010)
  • [2] Hecht D.S., Hu L., Irvin G., Adv. Mater., 23, pp. 1482-1513, (2011)
  • [3] Pang S., Hernandez Y., Feng X., Mullen K., Adv. Mater., 23, pp. 2779-2795, (2011)
  • [4] Kirchmeyer S., Reuter K.J., Mater. Chem., 15, pp. 2077-2088, (2005)
  • [5] MacDiarmid A.G., Angew. Chem. Int. Ed., 40, pp. 2581-2590, (2001)
  • [6] Wu Z., Chen Z., Du X., Logan J.M., Sippel J., Nikolou M., Kamaras K., Reynolds J.R., Tanner D.B., Hebard A.F., Science, 305, pp. 1273-1276, (2004)
  • [7] Doherty E.M., De S., Lyons P.E., Shmeliov A., Nirmalraj P.N., Scardaci V., Joimel J., Blau W.J., Boland J.J., Coleman J.N., Carbon, 47, pp. 2466-2473, (2009)
  • [8] Scardaci V., Coull R., Coleman J.N., Appl. Phys. Lett., 97, (2010)
  • [9] Li X.S., Zhu Y.W., Cai W.W., Borysiak M., Han B.Y., Piner D., Chen R.D., Colombo L., Ruoff R.S., Nano Lett., 9, pp. 4359-4363, (2009)
  • [10] Bae S., Kim H., Lee Y., Xu X.F., Park J.S., Zheng Y., Balakrishnan J., Lei T., Kim H.R., Song Y.I., Kim Y.J., Kim K.S., Ozyilmaz B., Ahn J.H., Hong B.H., Iijima S., Nat. Nanotechnol., 5, pp. 574-578, (2010)