Dynamic Analysis of Quasi-Zero Stiffness Pneumatic Vibration Isolator

被引:7
|
作者
Ngoc Yen Phuong Vo [1 ,2 ]
Thanh Danh Le [2 ]
机构
[1] Ho Chi Minh City Univ Technol & Educ, Fac Mech Engn, Ho Chi Minh City 71307, Vietnam
[2] Ind Univ Ho Chi Minh City, Fac Mech Engn, Ho Chi Minh City 71408, Vietnam
来源
APPLIED SCIENCES-BASEL | 2022年 / 12卷 / 05期
关键词
vibration isolator; quasi-zero stiffness; pneumatic cylinder; complex dynamic; sliding friction; PERFORMANCE; DESIGN; MODEL;
D O I
10.3390/app12052378
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This paper focuses on analyzing the dynamic response of an innovated quasi-zero stiffness pneumatic vibration isolator (QZSPVI) using two mechanisms, including wedge and semicircle cam. Different from other studies relating quasi-zero stiffness isolation system, the pneumatic cylinder in this paper works as an air spring in order to easily adjust the dynamic stiffness of the proposed system according to the change of the isolated load through regulating the pressure. Firstly, the dynamic stiffness of the QZSPVI will be analyzed. Then, the condition for which the minimum dynamic stiffness is quasi-zero around the equilibrium position is also determined. The fundamental resonance response of the QZSPVI subjected to the externally harmonic force is analyzed through multi-scale method and the numerical simulations are verified. Secondly, due to exiting relative sliding frictional phenomenon between the cylinder and piston, instead of an experiment, another key content of this work is to identify the friction force model of the cylinder through virtual prototyping model. From this identified result, the complex dynamic response of the QZSPVI and coexistence of multiple solutions will be discovered by realizing the direct integration of the original dynamic equation through using the 5th-order Runge-Kutta algorithm. The analysis and simulation results clearly show the advantages of the proposed model against the equivalent pneumatic vibration isolator (EPVI), which only employs the wedge mechanism. This research will offer a useful insight into design and QZSPVI in practice.
引用
收藏
页数:25
相关论文
共 50 条
  • [41] Resonance Response of a Quasi-zero Stiffness Vibration Isolator Considering a Constant Force
    Chun Cheng
    Shunming Li
    Yong Wang
    Xingxing Jiang
    Journal of Vibration Engineering & Technologies, 2018, 6 : 471 - 481
  • [42] Vibration Isolator using Hybrid Reluctance Actuator toward Quasi-zero Stiffness
    Takahashi, Kazuki
    Makino, Ryuto
    Ito, Shingo
    IFAC PAPERSONLINE, 2023, 56 (02): : 3392 - 3397
  • [43] Design and analysis of a quasi-zero stiffness nonlinear vibration isolator using viscoelastic damping materials
    Sarnaik, Vishwanil
    Panda, Satyajit
    Kanagaraj, Subramani
    NONLINEAR DYNAMICS, 2025,
  • [44] Evolution of the geometric structure of strange attractors of a quasi-zero stiffness vibration isolator
    Margielewicz, Jerzy
    Gaska, Damian
    Litak, Grzegorz
    CHAOS SOLITONS & FRACTALS, 2019, 118 : 47 - 57
  • [45] Resonance Response of a Quasi-zero Stiffness Vibration Isolator Considering a Constant Force
    Cheng, Chun
    Li, Shunming
    Wang, Yong
    Jiang, Xingxing
    JOURNAL OF VIBRATION ENGINEERING & TECHNOLOGIES, 2018, 6 (06) : 471 - 481
  • [46] Nonlinear dynamic characteristics of a quasi-zero stiffness vibration isolator with cam-roller-spring mechanisms
    Zhou, Jiaxi
    Wang, Xinlong
    Xu, Daolin
    Bishop, Steve
    JOURNAL OF SOUND AND VIBRATION, 2015, 346 : 53 - 69
  • [47] A multiple layer enhanced quasi-zero stiffness vibration isolator with magnetically modulated nonlinear stiffness
    Wang, Jingxuan
    Yao, Guo
    AEROSPACE SCIENCE AND TECHNOLOGY, 2025, 161
  • [48] Design of metastructures with quasi-zero dynamic stiffness for vibration isolation
    Fan, Haigui
    Yang, Lijuan
    Tian, Yuchen
    Wang, Zewu
    COMPOSITE STRUCTURES, 2020, 243
  • [49] An asymmetric quasi-zero stiffness vibration isolator with long stroke and large bearing capacity
    Xinghua Zhou
    Dingxuan Zhao
    Xiao Sun
    Xiao Yang
    Jianhai Zhang
    Tao Ni
    Kehong Tang
    Nonlinear Dynamics, 2022, 108 : 1903 - 1930
  • [50] Nonlinear Low Frequency Response Research for a Vibration Isolator with Quasi-Zero Stiffness Characteristic
    Yue Zhang
    Yufeng Mao
    Zhen Wang
    Chengfei Gao
    KSCE Journal of Civil Engineering, 2021, 25 : 1849 - 1856