Adaptive Task Offloading in Vehicular Edge Computing Networks: a Reinforcement Learning Based Scheme

被引:26
|
作者
Zhang, Jie [1 ]
Guo, Hongzhi [2 ]
Liu, Jiajia [2 ]
机构
[1] Xidian Univ, Sch Cyber Engn, Xian 710071, Shaanxi, Peoples R China
[2] Northwestern Polytech Univ, Sch Cybersecur, Xian 710072, Shaanxi, Peoples R China
来源
MOBILE NETWORKS & APPLICATIONS | 2020年 / 25卷 / 05期
基金
中国国家自然科学基金;
关键词
Vehicular networks; Mobile edge computing; Reinforcement learning; RESOURCE-ALLOCATION;
D O I
10.1007/s11036-020-01584-6
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In recent years, with the rapid development of Internet of Things (IoTs) and artificial intelligence, vehicular networks have transformed from simple interactive systems to smart integrated networks. The accompanying intelligent connected vehicles (ICVs) can communicate with each other and connect to the urban traffic information network, to support intelligent applications, i.e., autonomous driving, intelligent navigation, and in-vehicle entertainment services. These applications are usually delay-sensitive and compute-intensive, with the result that the computation resources of vehicles cannot meet the quality requirements of service for vehicles. To solve this problem, vehicular edge computing networks (VECNs) that utilize mobile edge computing offloading technology are seen as a promising paradigm. However, existing task offloading schemes lack consideration of the highly dynamic feature of vehicular networks, which makes them unable to give time-varying offloading decisions for dynamic changes in vehicular networks. Meanwhile, the current mobility model cannot truly reflect the actual road traffic situation. Toward this end, we study the task offloading problem in VECNs with the synchronized random walk model. Then, we propose a reinforcement learning-based scheme as our solution, and verify its superior performance in processing delay reduction and dynamic scene adaptability.
引用
收藏
页码:1736 / 1745
页数:10
相关论文
共 50 条
  • [41] NOMA-Based Task Offloading and Allocation in Vehicular Edge Computing Networks
    Zhao, Shuangliang
    Shi, Lei
    Shi, Yi
    Zhao, Fei
    Fan, Yuqi
    COLLABORATIVE COMPUTING: NETWORKING, APPLICATIONS AND WORKSHARING, COLLABORATECOM 2022, PT I, 2022, 460 : 343 - 359
  • [42] Deep-Reinforcement-Learning-Based Offloading Scheduling for Vehicular Edge Computing
    Zhan, Wenhan
    Luo, Chunbo
    Wang, Jin
    Wang, Chao
    Min, Geyong
    Duan, Hancong
    Zhu, Qingxin
    IEEE INTERNET OF THINGS JOURNAL, 2020, 7 (06) : 5449 - 5465
  • [43] Deep reinforcement learning based offloading decision algorithm for vehicular edge computing
    Hu X.
    Huang Y.
    PeerJ Computer Science, 2022, 8
  • [44] Deep reinforcement learning-based online task offloading in mobile edge computing networks
    Wu, Haixing
    Geng, Jingwei
    Bai, Xiaojun
    Jin, Shunfu
    INFORMATION SCIENCES, 2024, 654
  • [45] Online Learning Enabled Task Offloading for Vehicular Edge Computing
    Zhang, Rui
    Cheng, Peng
    Chen, Zhuo
    Liu, Sige
    Li, Yonghui
    Vucetic, Branka
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2020, 9 (07) : 928 - 932
  • [46] Federated Reinforcement Learning-Empowered Task Offloading for Large Models in Vehicular Edge Computing
    Wu, Huaming
    Gu, Anqi
    Liang, Yonghui
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2025, 74 (02) : 1979 - 1991
  • [47] Deep reinforcement learning approach for multi-hop task offloading in vehicular edge computing
    Ahmed, Manzoor
    Raza, Salman
    Ahmad, Haseeb
    Khan, Wali Ullah
    Xu, Fang
    Rabie, Khaled
    ENGINEERING SCIENCE AND TECHNOLOGY-AN INTERNATIONAL JOURNAL-JESTECH, 2024, 59
  • [48] Deep Learning-Based Task Discrimination Offloading in Vehicular Edge Computing
    Zhang J.
    Qi K.
    Zhang Q.
    Sun L.
    Dianzi Keji Daxue Xuebao/Journal of the University of Electronic Science and Technology of China, 2024, 53 (01): : 29 - 39
  • [49] Federated deep reinforcement learning for task offloading and resource allocation in mobile edge computing-assisted vehicular networks
    Zhao, Xu
    Wu, Yichuan
    Zhao, Tianhao
    Wang, Feiyu
    Li, Maozhen
    JOURNAL OF NETWORK AND COMPUTER APPLICATIONS, 2024, 229
  • [50] Learning Based Energy Efficient Task Offloading for Vehicular Collaborative Edge Computing
    Qin, Peng
    Fu, Yang
    Tang, Guoming
    Zhao, Xiongwen
    Geng, Suiyan
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2022, 71 (08) : 8398 - 8413