Adaptive Task Offloading in Vehicular Edge Computing Networks: a Reinforcement Learning Based Scheme

被引:26
|
作者
Zhang, Jie [1 ]
Guo, Hongzhi [2 ]
Liu, Jiajia [2 ]
机构
[1] Xidian Univ, Sch Cyber Engn, Xian 710071, Shaanxi, Peoples R China
[2] Northwestern Polytech Univ, Sch Cybersecur, Xian 710072, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Vehicular networks; Mobile edge computing; Reinforcement learning; RESOURCE-ALLOCATION;
D O I
10.1007/s11036-020-01584-6
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In recent years, with the rapid development of Internet of Things (IoTs) and artificial intelligence, vehicular networks have transformed from simple interactive systems to smart integrated networks. The accompanying intelligent connected vehicles (ICVs) can communicate with each other and connect to the urban traffic information network, to support intelligent applications, i.e., autonomous driving, intelligent navigation, and in-vehicle entertainment services. These applications are usually delay-sensitive and compute-intensive, with the result that the computation resources of vehicles cannot meet the quality requirements of service for vehicles. To solve this problem, vehicular edge computing networks (VECNs) that utilize mobile edge computing offloading technology are seen as a promising paradigm. However, existing task offloading schemes lack consideration of the highly dynamic feature of vehicular networks, which makes them unable to give time-varying offloading decisions for dynamic changes in vehicular networks. Meanwhile, the current mobility model cannot truly reflect the actual road traffic situation. Toward this end, we study the task offloading problem in VECNs with the synchronized random walk model. Then, we propose a reinforcement learning-based scheme as our solution, and verify its superior performance in processing delay reduction and dynamic scene adaptability.
引用
收藏
页码:1736 / 1745
页数:10
相关论文
共 50 条
  • [41] Mobile edge computing task distribution and offloading algorithm based on deep reinforcement learning in internet of vehicles
    Wang, Jianxi
    Wang, Liutao
    JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING, 2021,
  • [42] Computation Offloading Scheme to Improve QoE in Vehicular Networks with Mobile Edge Computing
    Liu, Qiaorong
    Su, Zhou
    Hui, Yilong
    2018 10TH INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS AND SIGNAL PROCESSING (WCSP), 2018,
  • [43] Offline Reinforcement Learning for Asynchronous Task Offloading in Mobile Edge Computing
    Zhang, Bolei
    Xiao, Fu
    Wu, Lifa
    IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2024, 21 (01): : 939 - 952
  • [44] Adaptive two-stage task offloading based on meta reinforcement learning for mobile edge computing
    Wenjuan Li
    Genyuan Yang
    Ben Wang
    Qifei Zhang
    Keyong Hu
    Chengjie Pan
    Qiwen Ni
    The Journal of Supercomputing, 81 (6)
  • [45] Deep Reinforcement Learning for Collaborative Edge Computing in Vehicular Networks
    Li, Mushu
    Gao, Jie
    Zhao, Lian
    Shen, Xuemin
    IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, 2020, 6 (04) : 1122 - 1135
  • [46] Task offloading for vehicular edge computing with imperfect CSI: A deep reinforcement approach
    Wu, Yuxin
    Xia, Junjuan
    Gao, Chongzhi
    Ou, Jiangtao
    Fan, Chengyuan
    Ou, Jianghong
    Fan, Dahua
    PHYSICAL COMMUNICATION, 2022, 55
  • [47] Edge Computing and UAV Swarm Cooperative Task Offloading in Vehicular Networks
    Ma, Xiandong
    Su, Zhou
    Xu, Qichao
    Ying, Bincheng
    2022 INTERNATIONAL WIRELESS COMMUNICATIONS AND MOBILE COMPUTING, IWCMC, 2022, : 955 - 960
  • [48] UAV-Assisted Task Offloading in Vehicular Edge Computing Networks
    Dai, Xingxia
    Xiao, Zhu
    Jiang, Hongbo
    Lui, John C. S.
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2024, 23 (04) : 2520 - 2534
  • [49] Computation Offloading for Mobile Edge Computing Enabled Vehicular Networks
    Wang, Jun
    Feng, Daquan
    Zhang, Shengli
    Tang, Jianhua
    Quek, Tony Q. S.
    IEEE ACCESS, 2019, 7 : 62624 - 62632
  • [50] Task Offloading and Serving Handover of Vehicular Edge Computing Networks Based on Trajectory Prediction
    Lv, Baiquan
    Yang, Chao
    Chen, Xin
    Yao, Zhihua
    Yang, Junjie
    IEEE ACCESS, 2021, 9 : 130793 - 130804