Adaptive Task Offloading in Vehicular Edge Computing Networks: a Reinforcement Learning Based Scheme

被引:26
|
作者
Zhang, Jie [1 ]
Guo, Hongzhi [2 ]
Liu, Jiajia [2 ]
机构
[1] Xidian Univ, Sch Cyber Engn, Xian 710071, Shaanxi, Peoples R China
[2] Northwestern Polytech Univ, Sch Cybersecur, Xian 710072, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Vehicular networks; Mobile edge computing; Reinforcement learning; RESOURCE-ALLOCATION;
D O I
10.1007/s11036-020-01584-6
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In recent years, with the rapid development of Internet of Things (IoTs) and artificial intelligence, vehicular networks have transformed from simple interactive systems to smart integrated networks. The accompanying intelligent connected vehicles (ICVs) can communicate with each other and connect to the urban traffic information network, to support intelligent applications, i.e., autonomous driving, intelligent navigation, and in-vehicle entertainment services. These applications are usually delay-sensitive and compute-intensive, with the result that the computation resources of vehicles cannot meet the quality requirements of service for vehicles. To solve this problem, vehicular edge computing networks (VECNs) that utilize mobile edge computing offloading technology are seen as a promising paradigm. However, existing task offloading schemes lack consideration of the highly dynamic feature of vehicular networks, which makes them unable to give time-varying offloading decisions for dynamic changes in vehicular networks. Meanwhile, the current mobility model cannot truly reflect the actual road traffic situation. Toward this end, we study the task offloading problem in VECNs with the synchronized random walk model. Then, we propose a reinforcement learning-based scheme as our solution, and verify its superior performance in processing delay reduction and dynamic scene adaptability.
引用
收藏
页码:1736 / 1745
页数:10
相关论文
共 50 条
  • [31] Deep reinforcement learning-based online task offloading in mobile edge computing networks
    Wu, Haixing
    Geng, Jingwei
    Bai, Xiaojun
    Jin, Shunfu
    INFORMATION SCIENCES, 2024, 654
  • [32] Deep reinforcement learning based offloading decision algorithm for vehicular edge computing
    Hu, Xi
    Huang, Yang
    PEERJ COMPUTER SCIENCE, 2022, 8
  • [33] Learning Based Energy Efficient Task Offloading for Vehicular Collaborative Edge Computing
    Qin, Peng
    Fu, Yang
    Tang, Guoming
    Zhao, Xiongwen
    Geng, Suiyan
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2022, 71 (08) : 8398 - 8413
  • [34] Adaptive Digital Twin and Multiagent Deep Reinforcement Learning for Vehicular Edge Computing and Networks
    Zhang, Ke
    Cao, Jiayu
    Zhang, Yan
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2022, 18 (02) : 1405 - 1413
  • [35] Fuzzy Reinforcement Learning for energy efficient task offloading in Vehicular Fog Computing
    Vemireddy, Satish
    Rout, Rashmi Ranjan
    COMPUTER NETWORKS, 2021, 199
  • [36] Joint Service Caching and Computation Offloading Scheme Based on Deep Reinforcement Learning in Vehicular Edge Computing Systems
    Xue, Zheng
    Liu, Chang
    Liao, Canliang
    Han, Guojun
    Sheng, Zhengguo
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2023, 72 (05) : 6709 - 6722
  • [37] DPRL: Task Offloading Strategy Based on Differential Privacy and Reinforcement Learning in Edge Computing
    Zhang, Peiying
    Gan, Peng
    Chang, Lunjie
    Wen, Wu
    Selvi, M.
    Kibalya, Godfrey
    IEEE ACCESS, 2022, 10 : 54002 - 54011
  • [38] Reinforcement-Learning-Based Task Offloading in Edge Computing Systems with Firm Deadlines
    Doan, Khai
    Araujo, Wesley
    Kranakis, Evangelos
    Lambadaris, Ioannis
    Viniotis, Yannis
    IEEE CONFERENCE ON GLOBAL COMMUNICATIONS, GLOBECOM, 2023, : 934 - 940
  • [39] Deep Reinforcement Learning for Task Offloading in Mobile Edge Computing Systems
    Tang, Ming
    Wong, Vincent W. S.
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2022, 21 (06) : 1985 - 1997
  • [40] A Survey on Task Offloading Research in Vehicular Edge Computing
    Li Z.-Y.
    Wang Q.
    Chen Y.-F.
    Xie G.-Q.
    Li R.-F.
    Jisuanji Xuebao/Chinese Journal of Computers, 2021, 44 (05): : 963 - 982