Adaptive Task Offloading in Vehicular Edge Computing Networks: a Reinforcement Learning Based Scheme

被引:26
|
作者
Zhang, Jie [1 ]
Guo, Hongzhi [2 ]
Liu, Jiajia [2 ]
机构
[1] Xidian Univ, Sch Cyber Engn, Xian 710071, Shaanxi, Peoples R China
[2] Northwestern Polytech Univ, Sch Cybersecur, Xian 710072, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Vehicular networks; Mobile edge computing; Reinforcement learning; RESOURCE-ALLOCATION;
D O I
10.1007/s11036-020-01584-6
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In recent years, with the rapid development of Internet of Things (IoTs) and artificial intelligence, vehicular networks have transformed from simple interactive systems to smart integrated networks. The accompanying intelligent connected vehicles (ICVs) can communicate with each other and connect to the urban traffic information network, to support intelligent applications, i.e., autonomous driving, intelligent navigation, and in-vehicle entertainment services. These applications are usually delay-sensitive and compute-intensive, with the result that the computation resources of vehicles cannot meet the quality requirements of service for vehicles. To solve this problem, vehicular edge computing networks (VECNs) that utilize mobile edge computing offloading technology are seen as a promising paradigm. However, existing task offloading schemes lack consideration of the highly dynamic feature of vehicular networks, which makes them unable to give time-varying offloading decisions for dynamic changes in vehicular networks. Meanwhile, the current mobility model cannot truly reflect the actual road traffic situation. Toward this end, we study the task offloading problem in VECNs with the synchronized random walk model. Then, we propose a reinforcement learning-based scheme as our solution, and verify its superior performance in processing delay reduction and dynamic scene adaptability.
引用
收藏
页码:1736 / 1745
页数:10
相关论文
共 50 条
  • [21] Dependency-aware task offloading based on deep reinforcement learning in mobile edge computing networks
    Li, Junnan
    Yang, Zhengyi
    Chen, Kai
    Ming, Zhao
    Li, Xiuhua
    Fan, Qilin
    Hao, Jinlong
    Cheng, Luxi
    WIRELESS NETWORKS, 2024, 30 (06) : 5519 - 5531
  • [22] Task offloading mechanism based on federated reinforcement learning in mobile edge computing
    Li, Jie
    Yang, Zhiping
    Wang, Xingwei
    Xia, Yichao
    Ni, Shijian
    DIGITAL COMMUNICATIONS AND NETWORKS, 2023, 9 (02) : 492 - 504
  • [23] Deep reinforcement learning-based low-latency task offloading for mobile-edge computing networks
    Yang, Wentao
    Liu, Zhibin
    Liu, Xiaowu
    Ma, Yuefeng
    APPLIED SOFT COMPUTING, 2024, 166
  • [24] Adaptive Task Offloading in Coded Edge Computing: A Deep Reinforcement Learning Approach
    Nguyen Van Tam
    Nguyen Quang Hieu
    Nguyen Thi Thanh Van
    Nguyen Cong Luong
    Niyato, Dusit
    Kim, Dong In
    IEEE COMMUNICATIONS LETTERS, 2021, 25 (12) : 3878 - 3882
  • [25] Trusted and Efficient Task Offloading in Vehicular Edge Computing Networks
    Guo, Hongzhi
    Chen, Xiangshen
    Zhou, Xiaoyi
    Liu, Jiajia
    IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, 2024, 10 (06) : 2370 - 2382
  • [26] Efficient Task Offloading for Mobile Edge Computing in Vehicular Networks
    Han, Xiao
    Wang, Huiqiang
    Yang, Guoliang
    Wang, Chengbo
    INTERNATIONAL JOURNAL OF DIGITAL CRIME AND FORENSICS, 2024, 16 (01)
  • [27] Task Offloading Strategy Based on Reinforcement Learning Computing in Edge Computing Architecture of Internet of Vehicles
    Wang, Kun
    Wang, Xiaofeng
    Liu, Xuan
    Jolfaei, Alireza
    IEEE ACCESS, 2020, 8 : 173779 - 173789
  • [28] Dependent Task Offloading for Edge Computing based on Deep Reinforcement Learning
    Wang, Jin
    Hu, Jia
    Min, Geyong
    Zhan, Wenhan
    Zomaya, Albert Y.
    Georgalas, Nektarios
    IEEE TRANSACTIONS ON COMPUTERS, 2022, 71 (10) : 2449 - 2461
  • [29] ADRLO: Adaptive deep reinforcement learning-based offloading for edge computing
    Li, Zhigang
    Wang, Yutong
    Zhang, Wentao
    Li, Shujie
    Sun, Xiaochuan
    PHYSICAL COMMUNICATION, 2023, 61
  • [30] NOMA-Based Task Offloading and Allocation in Vehicular Edge Computing Networks
    Zhao, Shuangliang
    Shi, Lei
    Shi, Yi
    Zhao, Fei
    Fan, Yuqi
    COLLABORATIVE COMPUTING: NETWORKING, APPLICATIONS AND WORKSHARING, COLLABORATECOM 2022, PT I, 2022, 460 : 343 - 359