A Note on Generic Clifford Algebras of Binary Cubic Forms

被引:0
|
作者
Wang, Linhong [1 ]
Wang, Xingting [2 ]
机构
[1] Univ Pittsburgh, Dept Math, Pittsburgh, PA 15260 USA
[2] Howard Univ, Dept Math, Washington, DC 20059 USA
关键词
Clifford algebra; Point variety; Discriminant ideals; REGULAR ALGEBRAS;
D O I
10.1007/s10468-019-09917-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the representation theoretic results of the binary cubic generic Clifford algebra C, which is an Artin-Schelter regular algebra of global dimension five. In particular, we show that C is a PI algebra of PI degree three and compute its point variety and discriminant ideals. As a consequence, we give a necessary and sufficient condition on a binary cubic form f for the associated Clifford algebra C-f to be an Azumaya algebra.
引用
收藏
页码:1797 / 1806
页数:10
相关论文
共 50 条
  • [21] Orthogonal symmetries and Clifford algebras
    M. G. Mahmoudi
    Proceedings - Mathematical Sciences, 2010, 120 : 535 - 561
  • [22] Tensor products of Clifford algebras
    Marchuk, N. G.
    DOKLADY MATHEMATICS, 2013, 87 (02) : 185 - 188
  • [23] The structure of norm Clifford algebras
    Keller, Hans A.
    Ochsenius, Herminia
    MATHEMATICA SLOVACA, 2012, 62 (06) : 1105 - 1120
  • [24] On Hyperbolic Clifford Algebras with Involution
    Mahmoudi, M. G.
    ALGEBRA COLLOQUIUM, 2013, 20 (02) : 251 - 260
  • [25] Method of Averaging in Clifford Algebras
    D. S. Shirokov
    Advances in Applied Clifford Algebras, 2017, 27 : 149 - 163
  • [26] Unitary spaces on Clifford algebras
    Marchuk, N. G.
    Shirokov, D. S.
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2008, 18 (02) : 237 - 254
  • [27] Ideal Structure of Clifford Algebras
    Yi Ming Zou
    Advances in Applied Clifford Algebras, 2009, 19 : 147 - 153
  • [28] Mathematical structure of clifford algebras
    Porteous, I
    LECTURES ON CLIFFORD (GEOMETRIC) ALGEBRAS AND APPLICATIONS, 2004, : 31 - 52
  • [29] Extended Grassmann and Clifford Algebras
    R. da Rocha
    J. Vaz
    Advances in Applied Clifford Algebras, 2006, 16 : 103 - 125
  • [30] Tensor products of Clifford algebras
    N. G. Marchuk
    Doklady Mathematics, 2013, 87 : 185 - 188