Wirtinger-type integral inequalities for interval-valued functions

被引:10
作者
Costa, T. M. [1 ]
Chalco-Cano, Y. [2 ]
Roman-Flores, H. [3 ]
机构
[1] Univ Fed Para, Inst Ciencias Exatas & Nat, Belem, Para, Brazil
[2] Univ Tarapaca, Dept Math, Casilla 7D, Arica, Chile
[3] Univ Tarapaca, Inst Alta Invest, Casilla 7D, Arica, Chile
关键词
Wirtinger's inequality; Interval-valued functions; Generalized Hukuhara differentiability of interval-valued functions; TUCKER OPTIMALITY CONDITIONS; PROGRAMMING-PROBLEMS; CALCULUS; ZEROS; DIFFERENTIABILITY;
D O I
10.1016/j.fss.2019.08.003
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This study presents some Wirtinger-type integral inequalities for interval-valued functions by means of the generalized Hukuhara differentiability and the Pompeiu-Hausdorff metric. These integral inequalities generalize their respective versions for real-valued functions. Numerical examples that illustrate the applicability of the theory developed herein are also provided. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:102 / 114
页数:13
相关论文
共 50 条
[41]   On Fejer Type Inclusions for Products of Interval-Valued Convex Functions [J].
Budak, Huseyin ;
Kara, Hasan ;
Erden, Samet .
FILOMAT, 2021, 35 (14) :4937-4955
[42]   Generalized Hukuhara Hadamard derivative of interval-valued functions and its applications to interval optimization [J].
Chauhan, Ram Surat ;
Ghosh, Debdas ;
Ansari, Qamrul Hasan .
SOFT COMPUTING, 2023, 28 (5) :4107-4123
[43]   Some Fuzzy Riemann-Liouville Fractional Integral Inequalities for Preinvex Fuzzy Interval-Valued Functions [J].
Khan, Muhammad Bilal ;
Zaini, Hatim Ghazi ;
Macias-Diaz, Jorge E. ;
Treanta, Savin ;
Soliman, Mohamed S. .
SYMMETRY-BASEL, 2022, 14 (02)
[44]   Calculus for interval-valued functions using generalized Hukuhara derivative and applications [J].
Chalco-Cano, Y. ;
Rufian-Lizana, A. ;
Roman-Flores, H. ;
Jimenez-Gamero, M. D. .
FUZZY SETS AND SYSTEMS, 2013, 219 :49-67
[45]   On Hermite-Hadamard-Type Inequalities for Coordinated h-Convex Interval-Valued Functions [J].
Zhao, Dafang ;
Zhao, Guohui ;
Ye, Guoju ;
Liu, Wei ;
Dragomir, Silvestru Sever .
MATHEMATICS, 2021, 9 (19)
[46]   ON HERMITE-HADAMARD TYPE INEQUALITIES FOR HARMONICAL h-CONVEX INTERVAL-VALUED FUNCTIONS [J].
Zhao, Dafang ;
An, Tianqing ;
Ye, Guoju ;
Torres, Delfim F. M. .
MATHEMATICAL INEQUALITIES & APPLICATIONS, 2020, 23 (01) :95-105
[47]   Post-quantum Hermite-Hadamard type inequalities for interval-valued convex functions [J].
Ali, Muhammad Aamir ;
Budak, Huseyin ;
Murtaza, Ghulam ;
Chu, Yu-Ming .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2021, 2021 (01)
[48]   A note on Gronwall type inequality for interval-valued functions [J].
Roman-Flores, Heriberto ;
Chalco-Cano, Yurilev ;
Silva, G. N. .
PROCEEDINGS OF THE 2013 JOINT IFSA WORLD CONGRESS AND NAFIPS ANNUAL MEETING (IFSA/NAFIPS), 2013, :1455-1458
[49]   New Jensen and Hermite–Hadamard type inequalities for h-convex interval-valued functions [J].
Dafang Zhao ;
Tianqing An ;
Guoju Ye ;
Wei Liu .
Journal of Inequalities and Applications, 2018
[50]   A new approach to interval-valued inequalities [J].
Awais Younus ;
Muhammad Asif ;
Jehad Alzabut ;
Abdul Ghaffar ;
Kottakkaran Sooppy Nisar .
Advances in Difference Equations, 2020