Wirtinger-type integral inequalities for interval-valued functions

被引:10
作者
Costa, T. M. [1 ]
Chalco-Cano, Y. [2 ]
Roman-Flores, H. [3 ]
机构
[1] Univ Fed Para, Inst Ciencias Exatas & Nat, Belem, Para, Brazil
[2] Univ Tarapaca, Dept Math, Casilla 7D, Arica, Chile
[3] Univ Tarapaca, Inst Alta Invest, Casilla 7D, Arica, Chile
关键词
Wirtinger's inequality; Interval-valued functions; Generalized Hukuhara differentiability of interval-valued functions; TUCKER OPTIMALITY CONDITIONS; PROGRAMMING-PROBLEMS; CALCULUS; ZEROS; DIFFERENTIABILITY;
D O I
10.1016/j.fss.2019.08.003
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This study presents some Wirtinger-type integral inequalities for interval-valued functions by means of the generalized Hukuhara differentiability and the Pompeiu-Hausdorff metric. These integral inequalities generalize their respective versions for real-valued functions. Numerical examples that illustrate the applicability of the theory developed herein are also provided. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:102 / 114
页数:13
相关论文
共 50 条
  • [31] Some Fractional Hermite-Hadamard Type Inequalities for Interval-Valued Functions
    Shi, Fangfang
    Ye, Guoju
    Zhao, Dafang
    Liu, Wei
    [J]. MATHEMATICS, 2020, 8 (04)
  • [32] Ostrowski type inequalities for interval-valued functions using generalized Hukuhara derivative
    Chalco-Cano, Y.
    Flores-Franulic, A.
    Roman-Flores, H.
    [J]. COMPUTATIONAL & APPLIED MATHEMATICS, 2012, 31 (03): : 457 - 472
  • [33] Gauss-type integral inequalities for interval and fuzzy-interval-valued functions
    Costa, T. M.
    Silva, G. N.
    Chalco-Cano, Y.
    Roman-Flores, H.
    [J]. COMPUTATIONAL & APPLIED MATHEMATICS, 2019, 38 (02)
  • [34] On some Hermite-Hadamard type inequalities for T-convex interval-valued functions
    Sha, Zehao
    Ye, Guoju
    Zhao, Dafang
    Liu, Wei
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01):
  • [35] Gauss-type integral inequalities for interval and fuzzy-interval-valued functions
    T. M. Costa
    G. N. Silva
    Y. Chalco-Cano
    H. Román-Flores
    [J]. Computational and Applied Mathematics, 2019, 38
  • [36] An Ostrowski type inequality for interval-valued functions
    Flores-Franulic, Arturo
    Chalco-Cano, Yurilev
    Roman-Flores, Heriberto
    [J]. PROCEEDINGS OF THE 2013 JOINT IFSA WORLD CONGRESS AND NAFIPS ANNUAL MEETING (IFSA/NAFIPS), 2013, : 1459 - 1462
  • [37] Generalized Preinvex Interval-Valued Functions and Related Hermite-Hadamard Type Inequalities
    Khan, Muhammad Bilal
    Treanta, Savin
    Soliman, Mohamed S.
    [J]. SYMMETRY-BASEL, 2022, 14 (09):
  • [38] Fractional Hermite-Hadamard-type inequalities for interval-valued co-ordinated convex functions
    Budak, Huseyin
    Kara, Hasan
    Ali, Muhammad Aamir
    Khan, Sundas
    Chu, Yuming
    [J]. OPEN MATHEMATICS, 2021, 19 (01): : 1081 - 1097
  • [39] On the Hermite–Hadamard inequalities for interval-valued coordinated convex functions
    Dafang Zhao
    Muhammad Aamir Ali
    Ghulam Murtaza
    Zhiyue Zhang
    [J]. Advances in Difference Equations, 2020
  • [40] ON HERMITE-HADAMARD TYPE INEQUALITIES FOR INTERVAL-VALUED MULTIPLICATIVE INTEGRALS
    Ali, Muhammad Aamir
    Zhang, Zhiyue
    Budak, Huseyin
    Sarikaya, Mehmet Zeki
    [J]. COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2020, 69 (02): : 1428 - 1448