Wirtinger-type integral inequalities for interval-valued functions

被引:10
作者
Costa, T. M. [1 ]
Chalco-Cano, Y. [2 ]
Roman-Flores, H. [3 ]
机构
[1] Univ Fed Para, Inst Ciencias Exatas & Nat, Belem, Para, Brazil
[2] Univ Tarapaca, Dept Math, Casilla 7D, Arica, Chile
[3] Univ Tarapaca, Inst Alta Invest, Casilla 7D, Arica, Chile
关键词
Wirtinger's inequality; Interval-valued functions; Generalized Hukuhara differentiability of interval-valued functions; TUCKER OPTIMALITY CONDITIONS; PROGRAMMING-PROBLEMS; CALCULUS; ZEROS; DIFFERENTIABILITY;
D O I
10.1016/j.fss.2019.08.003
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This study presents some Wirtinger-type integral inequalities for interval-valued functions by means of the generalized Hukuhara differentiability and the Pompeiu-Hausdorff metric. These integral inequalities generalize their respective versions for real-valued functions. Numerical examples that illustrate the applicability of the theory developed herein are also provided. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:102 / 114
页数:13
相关论文
共 50 条
  • [21] QUANTUM HERMITE-HADAMARD TYPE INEQUALITIES FOR INTERVAL-VALUED FUNCTIONS
    Cheng, Haiyang
    Zhao, Dafang
    Zhao, Guohui
    Torres, Delfim F. M.
    TWMS JOURNAL OF PURE AND APPLIED MATHEMATICS, 2023, 14 (02): : 246 - 265
  • [22] Ostrowski type inequalities and applications in numerical integration for interval-valued functions
    Y. Chalco-Cano
    W. A. Lodwick
    W. Condori-Equice
    Soft Computing, 2015, 19 : 3293 - 3300
  • [23] Generalized Hukuhara Gateaux and Frechet derivatives of interval-valued functions and their application in optimization with interval-valued functions
    Ghosh, Debdas
    Chauhan, Ram Surat
    Mesiar, Radko
    Debnath, Amit Kumar
    INFORMATION SCIENCES, 2020, 510 : 317 - 340
  • [24] NEW FRACTIONAL INTEGRAL INEQUALITIES FOR LR-h-PREINVEX INTERVAL-VALUED FUNCTIONS
    Tan, Yun
    Zhao, Dafang
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2024, 32 (05)
  • [25] New class of convex interval-valued functions and Riemann Lionville fractional integral inequalities
    Khan, Muhammad Bilal
    Alsalami, Omar Mutab
    Trean, Savin
    Saeed, Tareq
    Nonlaopon, Kamsing
    AIMS MATHEMATICS, 2022, 7 (08): : 15497 - 15519
  • [26] Some integral inequalities for coordinated log-h-convex interval-valued functions
    Shi, Fangfang
    Ye, Guoju
    Zhao, Dafang
    Liu, Wei
    AIMS MATHEMATICS, 2022, 7 (01): : 156 - 170
  • [27] Hermite-Hadamard-type Inequalities for h-preinvex Interval-Valued Functions via Fractional Integral
    Tan, Yun
    Zhao, Dafang
    Sarikaya, Mehmet Zeki
    INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2023, 16 (01)
  • [28] Some inequalities for interval-valued functions on time scales
    Dafang Zhao
    Guoju Ye
    Wei Liu
    Delfim F. M. Torres
    Soft Computing, 2019, 23 : 6005 - 6015
  • [29] FRACTIONAL QUANTUM HERMITE-HADAMARD-TYPE INEQUALITIES FOR INTERVAL-VALUED FUNCTIONS
    Cheng, Haiyang
    Zhao, Dafang
    Zhao, Guohui
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2023, 31 (09)
  • [30] Ostrowski type inequalities for interval-valued functions using generalized Hukuhara derivative
    Chalco-Cano, Y.
    Flores-Franulic, A.
    Roman-Flores, H.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2012, 31 (03): : 457 - 472