Adaptive total variation regularization based scheme for Poisson noise removal

被引:11
作者
Zhou, Weifeng [1 ,2 ]
Li, Qingguo [1 ]
机构
[1] Hunan Univ, Coll Math & Econometr, Changsha 410082, Hunan, Peoples R China
[2] Chuxiong Normal Univ, Dept Math, Chuxiong 675000, Yunnan, Peoples R China
基金
中国国家自然科学基金;
关键词
image denoising; Poisson noise; adaptive total variation; optimization problem; IMAGE-RESTORATION; ALGORITHM; MINIMIZATION;
D O I
10.1002/mma.2587
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
To better preserve the edge features, this paper investigates an adaptive total variation regularization based variational model for removing Poisson noise. This edge-preserving scheme comprises a spatially adaptive diffusivity coefficient, which adjusts the diffusion strength automatically. Compared with the classical total variation based one, numerical simulations distinctly indicate the superiority of our proposed strategy in maintaining the small details while denoising Poissonian image. Copyright (c) 2012 John Wiley & Sons, Ltd.
引用
收藏
页码:290 / 299
页数:10
相关论文
共 50 条
[41]   Multiplicative noise removal combining a total variation regularizer and a nonconvex regularizer [J].
Han, Yu ;
Xu, Chen ;
Baciu, George ;
Feng, Xiangchu .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2014, 91 (10) :2243-2259
[42]   Multiplicative noise removal via combining total variation and wavelet frame [J].
Li, Chunyan ;
Fan, Qibin .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2018, 95 (10) :2036-2055
[43]   Nonconvex higher-order regularization based Rician noise removal with spatially adaptive parameters [J].
Kang, Myeongmin ;
Kang, Myungjoo ;
Jung, Miyoun .
JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2015, 32 :180-193
[44]   Total variation and high-order total variation adaptive model for restoring blurred images with Cauchy noise [J].
Yang, Jing-Hua ;
Zhao, Xi-Le ;
Mei, Jin-Jin ;
Wang, Si ;
Ma, Tian-Hui ;
Huang, Ting-Zhu .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2019, 77 (05) :1255-1272
[45]   Stripe Noise Removal of Remote Sensing Images by Total Variation Regularization and Group Sparsity Constraint [J].
Chen, Yong ;
Huang, Ting-Zhu ;
Zhao, Xi-Le ;
Deng, Liang-Jian ;
Huang, Jie .
REMOTE SENSING, 2017, 9 (06)
[46]   An algorithm for image restoration with mixed noise using total variation regularization [J].
Cong Thang Pham ;
Gamard, Guilhem ;
Kopylov, Andrei ;
Thi Thu Thao Tran .
TURKISH JOURNAL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCES, 2018, 26 (06) :2831-+
[47]   Primal-dual algorithms for total variation based image restoration under Poisson noise [J].
YouWei Wen ;
Raymond Honfu Chan ;
TieYong Zeng .
Science China Mathematics, 2016, 59 :141-160
[48]   A New Total Variation Method for Multiplicative Noise Removal [J].
Huang, Yu-Mei ;
Ng, Michael K. ;
Wen, You-Wei .
SIAM JOURNAL ON IMAGING SCIENCES, 2009, 2 (01) :20-40
[49]   Selection of Regularization Parameter Based on Synchronous Noise in Total Variation Image Restoration [J].
Liu, Peng ;
Liu, Dingsheng ;
Liu, Zhiwen .
THIRD INTERNATIONAL CONFERENCE ON DIGITAL IMAGE PROCESSING (ICDIP 2011), 2011, 8009
[50]   Fast total variation deconvolution for blurred image contaminated by Poisson noise [J].
Tao, Shuyin ;
Dong, Wende ;
Xu, Zhihai ;
Tang, Zhenmin .
JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2016, 38 :582-594