Adaptive total variation regularization based scheme for Poisson noise removal

被引:11
作者
Zhou, Weifeng [1 ,2 ]
Li, Qingguo [1 ]
机构
[1] Hunan Univ, Coll Math & Econometr, Changsha 410082, Hunan, Peoples R China
[2] Chuxiong Normal Univ, Dept Math, Chuxiong 675000, Yunnan, Peoples R China
基金
中国国家自然科学基金;
关键词
image denoising; Poisson noise; adaptive total variation; optimization problem; IMAGE-RESTORATION; ALGORITHM; MINIMIZATION;
D O I
10.1002/mma.2587
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
To better preserve the edge features, this paper investigates an adaptive total variation regularization based variational model for removing Poisson noise. This edge-preserving scheme comprises a spatially adaptive diffusivity coefficient, which adjusts the diffusion strength automatically. Compared with the classical total variation based one, numerical simulations distinctly indicate the superiority of our proposed strategy in maintaining the small details while denoising Poissonian image. Copyright (c) 2012 John Wiley & Sons, Ltd.
引用
收藏
页码:290 / 299
页数:10
相关论文
共 50 条
  • [21] Poisson tensor completion with transformed correlated total variation regularization
    Feng, Qingrong
    Hou, Jingyao
    Kong, Weichao
    Xu, Chen
    Wang, Jianjun
    PATTERN RECOGNITION, 2024, 156
  • [22] Primal-dual algorithms for total variation based image restoration under Poisson noise
    Wen YouWei
    Chan Raymond Honfu
    Zeng TieYong
    SCIENCE CHINA-MATHEMATICS, 2016, 59 (01) : 141 - 160
  • [23] Total Variation Filter via Multiquadric Radial Basis Function Approximation Scheme for Additive Noise Removal
    Khan, Mushtaq Ahmad
    Altamimi, Ahmed B.
    Khan, Zawar Hussain
    Khattak, Khurram Shehzad
    Ali, Murtaza
    Ullah, Asmat
    Khan, Sheraz
    Khan, Muhammad Sohail
    Abrar, Muhammad Faisal
    IEEE ACCESS, 2020, 8 : 88241 - 88258
  • [24] IMAGE NOISE REMOVAL BASED ON TOTAL VARIATION
    Thanh, D. N. H.
    Dvoenko, S. D.
    COMPUTER OPTICS, 2015, 39 (04) : 564 - 571
  • [25] Removal of stripe noise with spatially adaptive unidirectional total variation
    Zhou, Gang
    Fang, Houzhang
    Yan, Luxin
    Zhang, Tianxu
    Hu, Jing
    OPTIK, 2014, 125 (12): : 2756 - 2762
  • [26] Poisson Noise Removal Using Non-convex Total Generalized Variation
    Xinwu Liu
    Yingying Li
    Iranian Journal of Science and Technology, Transactions A: Science, 2021, 45 : 2073 - 2084
  • [27] Multiquadric Radial Basis Function Approximation Scheme for Solution of Total Variation Based Multiplicative Noise Removal Model
    Khan, Mushtaq Ahmad
    Altamimi, Ahmed B.
    Khan, Zawar Hussain
    Khattak, Khurram Shehzad
    Khan, Sahib
    Ullah, Asmat
    Ali, Murtaza
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2021, 126 (01): : 55 - 88
  • [28] Poisson Noise Removal Using Non-convex Total Generalized Variation
    Liu, Xinwu
    Li, Yingying
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2021, 45 (06): : 2073 - 2084
  • [29] Poisson noise removal based on nonlocal total variation with Euler’s elastica pre-processing
    Liu H.
    Zhang Z.
    Xiao L.
    Wei Z.
    Journal of Shanghai Jiaotong University (Science), 2017, 22 (5) : 609 - 614
  • [30] Poisson Noise Removal Based on Nonlocal Total Variation with Euler’s Elastica Pre-processing
    刘红毅
    张峥嵘
    肖亮
    韦志辉
    Journal of Shanghai Jiaotong University(Science), 2017, (05) : 609 - 614