Adaptive total variation regularization based scheme for Poisson noise removal

被引:11
作者
Zhou, Weifeng [1 ,2 ]
Li, Qingguo [1 ]
机构
[1] Hunan Univ, Coll Math & Econometr, Changsha 410082, Hunan, Peoples R China
[2] Chuxiong Normal Univ, Dept Math, Chuxiong 675000, Yunnan, Peoples R China
基金
中国国家自然科学基金;
关键词
image denoising; Poisson noise; adaptive total variation; optimization problem; IMAGE-RESTORATION; ALGORITHM; MINIMIZATION;
D O I
10.1002/mma.2587
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
To better preserve the edge features, this paper investigates an adaptive total variation regularization based variational model for removing Poisson noise. This edge-preserving scheme comprises a spatially adaptive diffusivity coefficient, which adjusts the diffusion strength automatically. Compared with the classical total variation based one, numerical simulations distinctly indicate the superiority of our proposed strategy in maintaining the small details while denoising Poissonian image. Copyright (c) 2012 John Wiley & Sons, Ltd.
引用
收藏
页码:290 / 299
页数:10
相关论文
共 50 条
[21]   Poisson tensor completion with transformed correlated total variation regularization [J].
Feng, Qingrong ;
Hou, Jingyao ;
Kong, Weichao ;
Xu, Chen ;
Wang, Jianjun .
PATTERN RECOGNITION, 2024, 156
[22]   Primal-dual algorithms for total variation based image restoration under Poisson noise [J].
Wen YouWei ;
Chan Raymond Honfu ;
Zeng TieYong .
SCIENCE CHINA-MATHEMATICS, 2016, 59 (01) :141-160
[23]   Total Variation Filter via Multiquadric Radial Basis Function Approximation Scheme for Additive Noise Removal [J].
Khan, Mushtaq Ahmad ;
Altamimi, Ahmed B. ;
Khan, Zawar Hussain ;
Khattak, Khurram Shehzad ;
Ali, Murtaza ;
Ullah, Asmat ;
Khan, Sheraz ;
Khan, Muhammad Sohail ;
Abrar, Muhammad Faisal .
IEEE ACCESS, 2020, 8 :88241-88258
[24]   IMAGE NOISE REMOVAL BASED ON TOTAL VARIATION [J].
Thanh, D. N. H. ;
Dvoenko, S. D. .
COMPUTER OPTICS, 2015, 39 (04) :564-571
[25]   Removal of stripe noise with spatially adaptive unidirectional total variation [J].
Zhou, Gang ;
Fang, Houzhang ;
Yan, Luxin ;
Zhang, Tianxu ;
Hu, Jing .
OPTIK, 2014, 125 (12) :2756-2762
[26]   Poisson Noise Removal Using Non-convex Total Generalized Variation [J].
Liu, Xinwu ;
Li, Yingying .
IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2021, 45 (06) :2073-2084
[27]   Poisson Noise Removal Using Non-convex Total Generalized Variation [J].
Xinwu Liu ;
Yingying Li .
Iranian Journal of Science and Technology, Transactions A: Science, 2021, 45 :2073-2084
[28]   Multiquadric Radial Basis Function Approximation Scheme for Solution of Total Variation Based Multiplicative Noise Removal Model [J].
Khan, Mushtaq Ahmad ;
Altamimi, Ahmed B. ;
Khan, Zawar Hussain ;
Khattak, Khurram Shehzad ;
Khan, Sahib ;
Ullah, Asmat ;
Ali, Murtaza .
CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2021, 126 (01) :55-88
[29]   Poisson Noise Removal Based on Nonlocal Total Variation with Euler’s Elastica Pre-processing [J].
刘红毅 ;
张峥嵘 ;
肖亮 ;
韦志辉 .
Journal of Shanghai Jiaotong University(Science), 2017, (05) :609-614
[30]   Poisson noise removal based on nonlocal total variation with Euler’s elastica pre-processing [J].
Liu H. ;
Zhang Z. ;
Xiao L. ;
Wei Z. .
Journal of Shanghai Jiaotong University (Science), 2017, 22 (5) :609-614