Derived equivalence and Grothendieck ring of varieties: the case of K3 surfaces of degree 12 and abelian varieties

被引:4
|
作者
Ito, Atsushi [1 ]
Miura, Makoto [2 ]
Okawa, Shinnosuke [3 ]
Ueda, Kazushi [4 ]
机构
[1] Nagoya Univ, Grad Sch Math, Chikusa Ku, Furocho, Nagoya, Aichi 4648602, Japan
[2] Korea Inst Adv Study, 85 Hoegiro, Seoul 130722, South Korea
[3] Osaka Univ, Grad Sch Sci, Dept Math, Machikaneyama 1-1, Toyonaka, Osaka 5600043, Japan
[4] Univ Tokyo, Grad Sch Math Sci, Meguro Ku, 3-8-1 Komaba, Tokyo 1538914, Japan
来源
SELECTA MATHEMATICA-NEW SERIES | 2020年 / 26卷 / 03期
关键词
CALABI-YAU; TORELLI PROBLEM; ZETA-FUNCTIONS; MOTIVES; NUMBER;
D O I
10.1007/s00029-020-00561-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we discuss the problem of whether the difference [ X]-[Y] of the classes of a Fourier-Mukai pair (X, Y) of smooth projective varieties in the Grothendieck ring of varieties is annihilated by some power of the class L = [A(1)] of the affine line. We give an affirmative answer for Fourier-Mukai pairs of very general K3 surfaces of degree 12. On the other hand, we prove that in each dimension greater than one, there exists an abelian variety such that the difference with its dual is not annihilated by any power of L, thereby giving a negative answer to the problem. We also discuss variations of the problem.
引用
收藏
页数:27
相关论文
共 50 条
  • [1] Derived equivalence and Grothendieck ring of varieties: the case of K3 surfaces of degree 12 and abelian varieties
    Atsushi Ito
    Makoto Miura
    Shinnosuke Okawa
    Kazushi Ueda
    Selecta Mathematica, 2020, 26
  • [2] Reductions of abelian varieties and K3 surfaces
    Shankar, Ananth N.
    Tang, Yunqing
    JOURNAL OF NUMBER THEORY, 2025, 270 : 122 - 166
  • [3] Derived and abelian equivalence of K3 surfaces
    Huybrechts, Daniel
    JOURNAL OF ALGEBRAIC GEOMETRY, 2008, 17 (02) : 375 - 400
  • [4] ON UNIFORMITY CONJECTURES FOR ABELIAN VARIETIES AND K3 SURFACES
    Orr, Martin
    Skorobogatov, Alexei N.
    Zarhin, Yuri G.
    AMERICAN JOURNAL OF MATHEMATICS, 2021, 143 (06) : 1665 - 1702
  • [5] ABELIAN-VARIETIES ASSOCIATED TO CERTAIN K3 SURFACES
    PARANJAPE, K
    COMPOSITIO MATHEMATICA, 1988, 68 (01) : 11 - 22
  • [6] Finiteness theorems for K3 surfaces and abelian varieties of CM type
    Orr, Martin
    Skorobogatov, Alexei N.
    COMPOSITIO MATHEMATICA, 2018, 154 (08) : 1571 - 1592
  • [7] FINITENESS THEOREM FOR THE BRAUER GROUP OF ABELIAN VARIETIES AND K3 SURFACES
    Skorobogatov, Alexei N.
    Zarhin, Yuri G.
    JOURNAL OF ALGEBRAIC GEOMETRY, 2008, 17 (03) : 481 - 502
  • [8] Kuga-Satake abelian varieties of K3 surfaces in mixed characteristic
    Rizov, Jordan
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2010, 648 : 13 - 67
  • [9] ON THE IRREDUCIBILITY OF SEVERI VARIETIES ON K3 SURFACES
    Ciliberto, C.
    Dedieu, Th.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 147 (10) : 4233 - 4244
  • [10] Irreducible symplectic varieties from moduli spaces of sheaves on K3 and Abelian surfaces
    Perego, Arvid
    Rapagnetta, Antonio
    ALGEBRAIC GEOMETRY, 2023, 10 (03): : 348 - 393