Competitive Salt Precipitation/Dissolution During Free-Water Reduction in Water-in-Salt Electrolyte

被引:79
作者
Bouchal, Roza [1 ,6 ]
Li, Zhujie [2 ,3 ,6 ]
Bongu, Chandra [1 ,6 ]
Le Vot, Steven [1 ,6 ]
Berthelot, Romain [1 ,6 ]
Rotenberg, Benjamin [2 ,3 ,6 ]
Favier, Frederic [1 ,6 ]
Freunberger, Stefan A. [4 ,5 ]
Salanne, Mathieu [2 ,3 ,6 ]
Fontaine, Olivier [1 ,6 ]
机构
[1] Univ Montpellier, ICGM, CNRS, Montpellier, France
[2] vUPMC Univ Paris 06, Sorbonne Univ, CNRS, Lab PHENIX, F-75005 Paris, France
[3] Univ Paris Saclay, CEA, Maison Simulat, F-91191 Gif Sur Yvette, France
[4] Inst Chem & Technol Mat Graz, Stremayrgasse 9, A-8010 Graz, Austria
[5] IST Austria Inst Sci & Technol Austria, Campus 1, A-3400 Klosterneuburg, Austria
[6] Reseau Stockage Electrochim Energie RS2E, FR3459, CNRS, 33 Rue St Leu, F-80039 Amiens, France
基金
欧洲研究理事会;
关键词
electrochemistry; electrolytes; interfaces; salt effect; water-in-salt; IONIC LIQUIDS; LI BATTERIES; VOLTAGE;
D O I
10.1002/anie.202005378
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Water-in-salt electrolytes based on highly concentrated bis(trifluoromethyl)sulfonimide (TFSI) promise aqueous electrolytes with stabilities nearing 3 V. However, especially with an electrode approaching the cathodic (reductive) stability, cycling stability is insufficient. While stability critically relies on a solid electrolyte interphase (SEI), the mechanism behind the cathodic stability limit remains unclear. Now, two distinct reduction potentials are revealed for the chemical environments of free and bound water and that both contribute to SEI formation. Free water is reduced about 1 V above bound water in a hydrogen evolution reaction (HER) and is responsible for SEI formation via reactive intermediates of the HER; concurrent LiTFSI precipitation/dissolution establishes a dynamic interface. The free-water population emerges, therefore, as the handle to extend the cathodic limit of aqueous electrolytes and the battery cycling stability.
引用
收藏
页码:15913 / 15917
页数:5
相关论文
共 24 条
[1]  
[Anonymous], 2016, ANGEW CHEM, DOI DOI 10.1002/ANGE.201602397
[2]   On the application of ionic liquids for rechargeable Li batteries: High voltage systems [J].
Borgel, V. ;
Markevich, E. ;
Aurbach, D. ;
Semrau, G. ;
Schmidt, M. .
JOURNAL OF POWER SOURCES, 2009, 189 (01) :331-336
[3]   Electrochemical behavior of platinum, gold and glassy carbon electrodes in water-in-salt electrolyte [J].
Coustan, Laura ;
Shul, Galyna ;
Belanger, Daniel .
ELECTROCHEMISTRY COMMUNICATIONS, 2017, 77 :89-92
[4]   All-Organic Rechargeable Battery with Reversibility Supported by "Water-in-Salt" Electrolyte [J].
Dong, Xiaoli ;
Yu, Hongchuan ;
Ma, Yuanyuan ;
Bao, Junwei Lucas ;
Truhlar, Donald G. ;
Wang, Yonggang ;
Xia, Yongyao .
CHEMISTRY-A EUROPEAN JOURNAL, 2017, 23 (11) :2560-2565
[5]   The role of the hydrogen evolution reaction in the solid-electrolyte interphase formation mechanism for "Water-in-Salt" electrolytes [J].
Dubouis, Nicolas ;
Lemaire, Pierre ;
Mirvaux, Boris ;
Salager, Elodie ;
Deschamps, Michael ;
Grimaud, Alexis .
ENERGY & ENVIRONMENTAL SCIENCE, 2018, 11 (12) :3491-3499
[6]   High-Energy Aqueous Lithium Batteries [J].
Eftekhari, Ali .
ADVANCED ENERGY MATERIALS, 2018, 8 (24)
[7]   Electrochemical characterization of MnO2-based composite in the presence of salt-in-water and water-in-salt electrolytes as electrode for electrochemical capacitors [J].
Gambou-Bosca, Axel ;
Belanger, Daniel .
JOURNAL OF POWER SOURCES, 2016, 326 :595-603
[8]   "Water-in-Salt" for Supercapacitors: A Compromise between Voltage, Power Density, Energy Density and Stability [J].
Lannelongue, Pierre ;
Bouchal, Roza ;
Mourad, Eleonore ;
Bodin, Charlotte ;
Olarte, Marco ;
le Vot, Steven ;
Favier, Frederic ;
Fontaine, Olivier .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2018, 165 (03) :A657-A663
[9]   "Ionic liquids-in-salt" - a promising electrolyte concept for high-temperature lithium batteries? [J].
Marczewski, Maciej J. ;
Stanje, Bernhard ;
Hanzu, Ilie ;
Wilkening, Martin ;
Johansson, Patrik .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2014, 16 (24) :12341-12349
[10]   A short review on surface chemical aspects of Li batteries: A key for a good performance [J].
Martha, S. K. ;
Markevich, E. ;
Burgel, V. ;
Salitra, G. ;
Zinigrad, E. ;
Markovsky, B. ;
Sclar, H. ;
Pramovich, Z. ;
Heik, O. ;
Aurbach, D. ;
Exnar, I. ;
Buqa, H. ;
Drezen, T. ;
Semrau, G. ;
Schmidt, M. ;
Kovacheva, D. ;
Saliyski, N. .
JOURNAL OF POWER SOURCES, 2009, 189 (01) :288-296