Altered bone microarchitecture in a type 1 diabetes mouse model Ins2Akita

被引:10
作者
Carvalho, Filipe R. [1 ,2 ]
Calado, Sofia M. [2 ,3 ]
Silva, Gabriela A. [3 ,4 ,7 ]
Diogo, Gabriela S. [5 ]
da Silva, Joana Moreira [5 ]
Reis, Rui L. [5 ,6 ]
Leonor Cancela, M. [1 ,4 ]
Gavaia, Paulo J. [1 ,4 ]
机构
[1] Univ Algarve, Ctr Marine Sci CCMAR, P-8005139 Faro, Portugal
[2] Univ Algarve, PhD Program Biomed Sci, Faro, Portugal
[3] Univ Algarve, Ctr Biomed Res CBMR, Faro, Portugal
[4] Univ Algarve, Dept Biomed Sci & Med DCBM, Faro, Portugal
[5] ICVS 3Bs PT Govt Associate Lab, Guimaraes, Portugal
[6] Univ Minho, 3Bs Res Grp Biomat Biodegradables & Biomimet, Headquarters European Inst Excellence Tissue Engn, Guimaraes, Portugal
[7] Univ Nova Lisboa, NOVA Med Sch, CEDOC, Fac Ciencias Med, Campo Martires Patria 130, P-1169056 Lisbon, Portugal
关键词
bone; cartilage; diabetes; Ins2(Akita) mouse; insulin; leptin; GLYCATION END-PRODUCTS; POSTMENOPAUSAL WOMEN; MARROW ADIPOSITY; MINERAL DENSITY; TNF-ALPHA; LEPTIN; MASS; GROWTH; RECEPTOR; STREPTOZOTOCIN;
D O I
10.1002/jcp.27617
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Type 1 diabetes mellitus (T1DM) has been associated to several cartilage and bone alterations including growth retardation, increased fracture risk, and bone loss. To determine the effect of long term diabetes on bone we used adult and aging Ins2(Akita) mice that developed T1DM around 3-4 weeks after birth. Both Ins2(Akita) and wild-type (WT) mice were analyzed at 4, 6, and 12 months to assess bone parameters such as femur length, growth plate thickness and number of mature and preapoptotic chondrocytes. In addition, bone microarchitecture of the cortical and trabecular regions was measured by microcomputed tomography and gene expression of Adamst-5, Col2, Igf1, Runx2, Acp5, and Oc was quantified by quantitative real-time polymerase chain reaction. Ins2(Akita) mice showed a decreased longitudinal growth of the femur that was related to decreased growth plate thickness, lower number of chondrocytes and to a higher number of preapoptotic cells. These changes were associated with higher expression of Adamst-5, suggesting higher cartilage degradation, and with low expression levels of Igf1 and Col2 that reflect the decreased growth ability of diabetic mice. Ins2(Akita) bone morphology was characterized by low cortical bone area (Ct.Ar) but higher trabecular bone volume (BV/TV) and expression analysis showed a downregulation of bone markers Acp5, Oc, and Runx2. Serum levels of insulin and leptin were found to be reduced at all-time points Ins2(Akita). We suggest that Ins2(Akita) mice bone phenotype is caused by lower bone formation and even lower bone resorption due to insulin deficiency and to a possible relation with low leptin signaling.
引用
收藏
页码:9338 / 9350
页数:13
相关论文
共 48 条
[1]   Hypothalamic regulation of cortical bone mass: Opposing activity of Y2 receptor and leptin pathways [J].
Baldock, Paul A. ;
Allison, Susan ;
McDonald, Michelle M. ;
Sainsbury, Amanda ;
Enriquez, Ronaldo F. ;
Little, David G. ;
Eisman, John A. ;
Gardiner, Edith M. ;
Herzog, Herbert .
JOURNAL OF BONE AND MINERAL RESEARCH, 2006, 21 (10) :1600-1607
[2]   Central (ICV) Leptin Injection Increases Bone Formation, Bone Mineral Density, Muscle Mass, Serum IGF-1, and the Expression of Osteogenic Genes in Leptin-Deficient ob/ob Mice [J].
Bartell, Shoshana M. ;
Rayalam, Srujana ;
Ambati, Suresh ;
Gaddam, Dhanunjaya R. ;
Hartzell, Diane L. ;
Hamrick, Mark ;
She, Jin-Xiong ;
Della-Fera, Mary Anne ;
Baile, Clifton A. .
JOURNAL OF BONE AND MINERAL RESEARCH, 2011, 26 (08) :1710-1720
[3]   Both spontaneous Ins2+/- and streptozotocin-induced type I diabetes cause bone loss in young mice [J].
Coe, Lindsay M. ;
Zhang, Jing ;
McCabe, Laura R. .
JOURNAL OF CELLULAR PHYSIOLOGY, 2013, 228 (04) :689-695
[4]   The Bone Marrow Microenvironment Contributes to Type I Diabetes Induced Osteoblast Death [J].
Coe, Lindsay M. ;
Irwin, Regina ;
Lippner, Dennean ;
McCabe, Laura R. .
JOURNAL OF CELLULAR PHYSIOLOGY, 2011, 226 (02) :477-483
[5]   Leptin directly regulates bone cell function in vitro and reduces bone fragility in vivo [J].
Cornish, J ;
Callon, KE ;
Bava, U ;
Lin, C ;
Naot, D ;
Hill, BL ;
Grey, AB ;
Broom, N ;
Myers, DE ;
Nicholson, GC ;
Reid, IR .
JOURNAL OF ENDOCRINOLOGY, 2002, 175 (02) :405-415
[6]   Caloric Restriction Leads to High Marrow Adiposity and Low Bone Mass in Growing Mice [J].
Devlin, Maureen J. ;
Cloutier, Alison M. ;
Thomas, Nishina A. ;
Panus, David A. ;
Lotinun, Sutada ;
Pinz, Ilka ;
Baron, Roland ;
Rosen, Clifford J. ;
Bouxsein, Mary L. .
JOURNAL OF BONE AND MINERAL RESEARCH, 2010, 25 (09) :2078-2088
[7]   Secular trends in growth in diabetes: are we winning? [J].
Donaghue, KC ;
Kordonouri, O ;
Chan, A ;
Silink, M .
ARCHIVES OF DISEASE IN CHILDHOOD, 2003, 88 (02) :151-154
[8]   Leptin inhibits bone formation through a hypothalamic relay: A central control of bone mass [J].
Ducy, P ;
Amling, M ;
Takeda, S ;
Priemel, M ;
Schilling, AF ;
Beil, FT ;
Shen, JH ;
Vinson, C ;
Rueger, JM ;
Karsenty, G .
CELL, 2000, 100 (02) :197-207
[9]   Leptin regulation of bone resorption by the sympathetic nervous system and CART [J].
Elefteriou, F ;
Ahn, JD ;
Takeda, S ;
Starbuck, M ;
Yang, XL ;
Liu, XY ;
Kondo, H ;
Richards, WG ;
Bannon, TW ;
Noda, M ;
Clement, K ;
Vaisse, C ;
Karsenty, G .
NATURE, 2005, 434 (7032) :514-520
[10]   Insulin Signaling in Osteoblasts Integrates Bone Remodeling and Energy Metabolism [J].
Ferron, Mathieu ;
Wei, Jianwen ;
Yoshizawa, Tatsuya ;
Del Fattore, Andrea ;
DePinho, Ronald A. ;
Teti, Anna ;
Ducy, Patricia ;
Karsenty, Gerard .
CELL, 2010, 142 (02) :296-308