Spatial Attentive Single-Image Deraining with a High Quality Real Rain Dataset

被引:503
作者
Wang, Tianyu [1 ,2 ]
Yang, Xin [1 ,2 ]
Xu, Ke [1 ,2 ]
Chen, Shaozhe [1 ]
Zhang, Qiang [1 ]
Lau, Rynson W. H. [2 ]
机构
[1] Dalian Univ Technol, Dalian, Peoples R China
[2] City Univ Hong Kong, Hong Kong, Peoples R China
来源
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019) | 2019年
关键词
D O I
10.1109/CVPR.2019.01255
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Removing rain streaks from a single image has been drawing considerable attention as rain streaks can severely degrade the image quality and affect the performance of existing outdoor vision tasks. While recent CNN-based derainers have reported promising performances, deraining remains an open problem for two reasons. First, existing synthesized rain datasets have only limited realism, in terms of modeling real rain characteristics such as rain shape, direction and intensity. Second, there are no public benchmarks for quantitative comparisons on real rain images, which makes the current evaluation less objective. The core challenge is that real world rain/clean image pairs cannot be captured at the same time. In this paper, we address the single image rain removal problem in two ways. First, we propose a semi-automatic method that incorporates temporal priors and human supervision to generate a high-quality clean image from each input sequence of real rain images. Using this method, we construct a large-scale dataset of similar to 29.5K rain/rain-free image pairs that covers a wide range of natural rain scenes. Second, to better cover the stochastic distribution of real rain streaks, we propose a novel SPatial Attentive Network (SPANet) to remove rain streaks in a local-to-global manner. Extensive experiments demonstrate that our network performs favorably against the state-of-the-art deraining methods.
引用
收藏
页码:12262 / 12271
页数:10
相关论文
共 46 条
[1]   A High-Quality Denoising Dataset for Smartphone Cameras [J].
Abdelhamed, Abdelrahman ;
Lin, Stephen ;
Brown, Michael S. .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :1692-1700
[2]  
Anaya J., 2014, ARXIV14098230
[3]  
[Anonymous], 2017, CVPR
[4]  
Bell Sean, 2016, CVPR
[5]   Transformed Low-rank Model for Line Pattern Noise Removal [J].
Chang, Yi ;
Yan, Luxin ;
Zhong, Sheng .
2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, :1735-1743
[6]  
CHEN J, 2014, IEEE TIP
[7]   Image Blind Denoising With Generative Adversarial Network Based Noise Modeling [J].
Chen, Jingwen ;
Chen, Jiawei ;
Chao, Hongyang ;
Yang, Ming .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :3155-3164
[8]   A Generalized Low-Rank Appearance Model for Spatio-Temporally Correlated Rain Streaks [J].
Chen, Yi-Lei ;
Hsu, Chiou-Ting .
2013 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2013, :1968-1975
[9]  
Du Shuangli, 2018, PR
[10]   Removing rain from single images via a deep detail network [J].
Fu, Xueyang ;
Huang, Jiabin ;
Zeng, Delu ;
Huang, Yue ;
Ding, Xinghao ;
Paisley, John .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :1715-1723