Hibernation: The search for treatments to prevent disuse-induced skeletal muscle atrophy

被引:26
|
作者
Bodine, Sue C. [1 ,2 ]
机构
[1] Univ Calif Davis, Dept Neurobiol Physiol & Behav, Davis, CA 95616 USA
[2] Univ Calif Davis, Dept Membrane Biol, Davis, CA 95616 USA
关键词
FORKHEAD TRANSCRIPTION FACTOR; 13-LINED GROUND-SQUIRRELS; METABOLIC-RATE DEPRESSION; RESISTANCE EXERCISE; PROTEIN-SYNTHESIS; BED REST; SPERMOPHILUS-TRIDECEMLINEATUS; UBIQUITIN LIGASES; UNDERLYING MECHANISMS; MAMMALIAN HIBERNATION;
D O I
10.1016/j.expneurol.2013.06.003
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Loss of skeletal muscle mass is a serious consequence of multiple diseases and conditions for which there is limited treatment options. Disuse-induced muscle atrophy occurs as the result of both reduced mechanical loading and decreased neural activity. Hibernation represents a unique physiological state where skeletal muscles are protected from unloading, inactivity and nutritional deprivation. A recent study published in Experimental Neurology (Xu et al., 2013) utilized the thirteen-lined ground squirrel, a natural hibernator, to specifically examine whether peroxisome proliferator-activated receptor gamma (PPAR gamma) coactivator 1-alpha (PGC-1 alpha) and its associated upstream and downstream signaling partners were increased during hibernation. The results showed an increase in PGC-1 alpha expression as well as increases in mitochondrial biogenesis, oxidative capacity, and antioxidant capacity in hibernating animals. It was suggested that upregulation of PCG-1 alpha. could be a viable strategy for the treatment of disuse-induced atrophy in humans. This commentary discusses the results of Xu et al. in the context of other studies that have examined muscle sparing in hibernating mammals, and compares these findings to what is known about disuse-induced atrophy in nonhibernating rodents and humans. Published by Elsevier Inc.
引用
收藏
页码:129 / 135
页数:7
相关论文
共 50 条
  • [1] Mitochondrial Autophagy In Disuse-induced Skeletal Muscle Atrophy
    Kang, Choung-Hun
    Yeo, Dongwook
    Ji, Li Li
    MEDICINE AND SCIENCE IN SPORTS AND EXERCISE, 2014, 46 (05): : 357 - 357
  • [2] ROLE OF GELATINASES IN DISUSE-INDUCED SKELETAL MUSCLE ATROPHY
    Liu, Xuhui
    Lee, David J.
    Skittone, Laura K.
    Natsuhara, Kyle
    Kim, Hubert T.
    MUSCLE & NERVE, 2010, 41 (02) : 174 - 178
  • [3] The Structural Adaptations That Mediate Disuse-Induced Atrophy of Skeletal Muscle
    Sayed, Ramy K. A.
    Hibbert, Jamie E.
    Jorgenson, Kent W.
    Hornberger, Troy A.
    CELLS, 2023, 12 (24)
  • [4] Determinants of disuse-induced skeletal muscle atrophy: Exercise and nutrition countermeasures to prevent protein loss
    Bajotto, Gustavo
    Shimomura, Yoshiharu
    JOURNAL OF NUTRITIONAL SCIENCE AND VITAMINOLOGY, 2006, 52 (04) : 233 - 247
  • [5] Hyperglycemia Inhibits Recovery From Disuse-Induced Skeletal Muscle Atrophy in Rats
    Kataoka, H.
    Nakano, J.
    Morimoto, Y.
    Honda, Y.
    Sakamoto, J.
    Origuchi, T.
    Okita, M.
    Yoshimura, T.
    PHYSIOLOGICAL RESEARCH, 2014, 63 (04) : 465 - 474
  • [6] Inhibition of IkappaB Kinase Prevents Disuse-Induced Skeletal Muscle Atrophy in Mice
    Miyazaki, Mitsunori
    Haga, Shukoh
    Takemasa, Tohru
    MEDICINE AND SCIENCE IN SPORTS AND EXERCISE, 2006, 38 (05): : S275 - S275
  • [7] Functional and morphological effects of resistance exercise on disuse-induced skeletal muscle atrophy
    Nicastro, H.
    Zanchi, N. E.
    da Luz, C. R.
    Lancha, A. H., Jr.
    BRAZILIAN JOURNAL OF MEDICAL AND BIOLOGICAL RESEARCH, 2011, 44 (11) : 1070 - 1079
  • [8] Chicken or Egg? Mitochondrial Phospholipids and Oxidative Stress in Disuse-Induced Skeletal Muscle Atrophy
    Miranda, Edwin R.
    Shahtout, Justin L.
    Funai, Katsuhiko
    ANTIOXIDANTS & REDOX SIGNALING, 2023, 38 (04) : 338 - 351
  • [9] Mitigating disuse-induced skeletal muscle atrophy in ageing: Resistance exercise as a critical countermeasure
    McKendry, James
    Coletta, Giulia
    Nunes, Everson A.
    Lim, Changhyun
    Phillips, Stuart M.
    EXPERIMENTAL PHYSIOLOGY, 2024, 109 (10) : 1650 - 1662
  • [10] ER Stress is Activated and Involved in Disuse-Induced Muscle Atrophy
    Wang, Lu
    Pang, Xiangsheng
    Li, Shiming
    Li, Wenjiong
    Chen, Xiaoping
    Zhang, Peng
    FRONTIERS IN BIOSCIENCE-LANDMARK, 2023, 28 (07):