WHITTAKER-FOURIER COEFFICIENTS OF CUSP FORMS ON <(Spn)over tilde>: REDUCTION TO A LOCAL STATEMENT

被引:0
|
作者
Lapid, Erez [1 ]
Mao, Zhengyu [2 ]
机构
[1] Weizmann Inst Sci, Dept Math, IL-76100 Rehovot, Israel
[2] Rutgers State Univ, Dept Math & Comp Sci, Newark, NJ 07102 USA
基金
美国国家科学基金会;
关键词
HILBERT MODULAR-FORMS; AUTOMORPHIC-FORMS; INDUCED REPRESENTATIONS; DISTRIBUTION VECTORS; EULER PRODUCTS; GL(2N); CLASSIFICATION; REDUCIBILITY; SO(2N+1); DESCENT;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In a previous paper we formulated an analogue of the Ichino-Ikeda conjectures for Whittaker-Fourier coefficients of cusp forms on quasi-split groups, as well as the metaplectic group of arbitrary rank. In this paper we reduce the conjecture for the metaplectic group to a local conjectural identity. We motivate this conjecture by giving a heuristic argument for the case (SL2) over tilde. In a subsequent paper we will prove the local identity in the p-adic case.
引用
收藏
页码:1 / 55
页数:55
相关论文
共 21 条