The supremum-involving Hardy-type operators on Lorentz-type spaces

被引:0
作者
Sun, Qinxiu [1 ]
Yu, Xiao [2 ]
Li, Hongliang [3 ]
机构
[1] Zhejiang Univ Sci & Technol, Dept Math, Hangzhou 310023, Peoples R China
[2] Shangrao Normal Univ, Dept Math, Shangrao 334001, Peoples R China
[3] Zhejiang Int Studies Univ, Dept Math, Hangzhou 310012, Peoples R China
基金
中国国家自然科学基金;
关键词
Hardy-type operators involving suprema; Orlicz-Lorentz spaces; weighted Lorentz spaces; boundedness; compactness; NORM INEQUALITIES; INTERPOLATION; COMPACTNESS; CONVEXITY;
D O I
10.4171/PM/2042
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given measurable functions u, sigma on an interval (0, b) and a kernel function k(x, y) on (0, b)(2) satisfying Oinarov condition, the supremum-involving Hardy-type operators Rf(x) = sup(x <=tau <= b) u(tau) integral(tau)(0) k(tau, y)sigma(y) f(y) dy, x > 0 in Orlicz-Lorentz spaces are investigated. We obtain sufficient conditions of boundedness of R : Lambda(G0)(u0)(w(0)) -> Lambda(G1)(u1)(w(1)) and R : Lambda(G0)(u0)(w(0)) -> Lambda(G1, infinity)(u1)(w(1)). Furthermore, in the case of weighted Lorentz spaces, two characterizations of the boundedness of the operator R : Lambda(p0)(u0)(w(0)) -> Lambda(p1, q1)(u1)(w(1)) are achieved as well as the compactness of the operator R is characterized. It is notable that in the present paper the spaces are only required to be quasi-Banach spaces other than Banach spaces.
引用
收藏
页码:1 / 29
页数:29
相关论文
共 36 条
  • [1] Bennett C., 1988, PURE APPL MATH, V129
  • [2] Carro MJ, 2007, MEM AM MATH SOC, V187, pIX
  • [3] WEIGHTED LORENTZ SPACES AND THE HARDY OPERATOR
    CARRO, MJ
    SORIA, J
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 1993, 112 (02) : 480 - 494
  • [4] Cianchi A, 2000, STUD MATH, V138, P277
  • [5] Weak type interpolation near "endpoint" spaces
    Cwikel, M
    Pustylnik, E
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2000, 171 (02) : 235 - 277
  • [6] Real interpolation with logarithmic functors and reiteration
    Evans, WD
    Opic, B
    [J]. CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2000, 52 (05): : 920 - 960
  • [7] Reduction theorems for weighted integral inequalities on the cone of monotone functions
    Gogatishvili, A.
    Stepanov, V. D.
    [J]. RUSSIAN MATHEMATICAL SURVEYS, 2013, 68 (04) : 597 - 664
  • [8] A reduction theorem for supremum operators
    Gogatishvili, Amiran
    Pick, Lubos
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 208 (01) : 270 - 279
  • [9] Gogatishvili A, 2006, COLLECT MATH, V57, P227
  • [10] Observation of superconductivity in 1T′-MoS2 nanosheets
    Guo, Chenguang
    Pan, Jie
    Li, Hui
    Lin, Tianquan
    Liu, Pan
    Song, Changsheng
    Wang, Dong
    Mu, Gang
    Lai, Xiaofang
    Zhang, Hui
    Zhou, Wei
    Chen, Mingwei
    Huang, Fuqiang
    [J]. JOURNAL OF MATERIALS CHEMISTRY C, 2017, 5 (41) : 10855 - 10860