The supremum-involving Hardy-type operators on Lorentz-type spaces

被引:1
作者
Sun, Qinxiu [1 ]
Yu, Xiao [2 ]
Li, Hongliang [3 ]
机构
[1] Zhejiang Univ Sci & Technol, Dept Math, Hangzhou 310023, Peoples R China
[2] Shangrao Normal Univ, Dept Math, Shangrao 334001, Peoples R China
[3] Zhejiang Int Studies Univ, Dept Math, Hangzhou 310012, Peoples R China
基金
中国国家自然科学基金;
关键词
Hardy-type operators involving suprema; Orlicz-Lorentz spaces; weighted Lorentz spaces; boundedness; compactness; NORM INEQUALITIES; INTERPOLATION; COMPACTNESS; CONVEXITY;
D O I
10.4171/PM/2042
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given measurable functions u, sigma on an interval (0, b) and a kernel function k(x, y) on (0, b)(2) satisfying Oinarov condition, the supremum-involving Hardy-type operators Rf(x) = sup(x <=tau <= b) u(tau) integral(tau)(0) k(tau, y)sigma(y) f(y) dy, x > 0 in Orlicz-Lorentz spaces are investigated. We obtain sufficient conditions of boundedness of R : Lambda(G0)(u0)(w(0)) -> Lambda(G1)(u1)(w(1)) and R : Lambda(G0)(u0)(w(0)) -> Lambda(G1, infinity)(u1)(w(1)). Furthermore, in the case of weighted Lorentz spaces, two characterizations of the boundedness of the operator R : Lambda(p0)(u0)(w(0)) -> Lambda(p1, q1)(u1)(w(1)) are achieved as well as the compactness of the operator R is characterized. It is notable that in the present paper the spaces are only required to be quasi-Banach spaces other than Banach spaces.
引用
收藏
页码:1 / 29
页数:29
相关论文
共 36 条
[1]  
Bennett C., 1988, PURE APPL MATH, V129
[2]  
Carro MJ, 2007, MEM AM MATH SOC, V187, pIX
[3]   WEIGHTED LORENTZ SPACES AND THE HARDY OPERATOR [J].
CARRO, MJ ;
SORIA, J .
JOURNAL OF FUNCTIONAL ANALYSIS, 1993, 112 (02) :480-494
[4]  
Cianchi A, 2000, STUD MATH, V138, P277
[5]   Weak type interpolation near "endpoint" spaces [J].
Cwikel, M ;
Pustylnik, E .
JOURNAL OF FUNCTIONAL ANALYSIS, 2000, 171 (02) :235-277
[6]   Real interpolation with logarithmic functors and reiteration [J].
Evans, WD ;
Opic, B .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2000, 52 (05) :920-960
[7]   Reduction theorems for weighted integral inequalities on the cone of monotone functions [J].
Gogatishvili, A. ;
Stepanov, V. D. .
RUSSIAN MATHEMATICAL SURVEYS, 2013, 68 (04) :597-664
[8]   A reduction theorem for supremum operators [J].
Gogatishvili, Amiran ;
Pick, Lubos .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 208 (01) :270-279
[9]  
Gogatishvili A, 2006, COLLECT MATH, V57, P227
[10]   Observation of superconductivity in 1T′-MoS2 nanosheets [J].
Guo, Chenguang ;
Pan, Jie ;
Li, Hui ;
Lin, Tianquan ;
Liu, Pan ;
Song, Changsheng ;
Wang, Dong ;
Mu, Gang ;
Lai, Xiaofang ;
Zhang, Hui ;
Zhou, Wei ;
Chen, Mingwei ;
Huang, Fuqiang .
JOURNAL OF MATERIALS CHEMISTRY C, 2017, 5 (41) :10855-10860