Convergence of nanotechnology with radiation therapy-insights and implications for clinical translation

被引:31
作者
Chatterjee, Dev Kumar [1 ]
Wolfe, Tatiana [1 ]
Lee, Jihyoun [1 ,2 ]
Brown, Aaron P. [1 ]
Singh, Pankaj Kumar [1 ]
Bhattarai, Shanta Raj [1 ]
Diagaradjane, Parmeswaran [1 ]
Krishnan, Sunil [1 ]
机构
[1] Univ Texas MD Anderson Canc Ctr, Dept Radiat Oncol, Houston, TX 77030 USA
[2] Soon Chun Hyang Univ Hosp, Bucheon, South Korea
基金
美国国家卫生研究院;
关键词
Cancer; nanoparticles; nanotechnology; radiation therapy (RT); review; GOLD NANOPARTICLE RADIOSENSITIZATION; LOADED PLLA NANOPARTICLES; NEUTRON-CAPTURE THERAPY; MAGNETIC NANOPARTICLES; DOSE ENHANCEMENT; CANCER; HYPERTHERMIA; DELIVERY; RADIOIMMUNOTHERAPY; RADIOPROTECTION;
D O I
10.3978/j.issn.2218-676X.2013.08.10
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Improvements in accuracy and efficacy in treating tumors with radiation therapy (RT) over the years have been fueled by parallel technological and conceptual advances in imaging and image-guidance techniques, radiation treatment machines, computational methods, and the understanding of the biology of tumor response to RT. Recent advances in our understanding of the hallmarks of cancer and the emergence of strategies to combat these traits of cancer have resulted in an expanding repertoire of targeted therapeutics, many of which can be exploited for enhancing the efficacy of RT. Complementing this advent of new treatment options is the evolution of our knowledge of the interaction between nanoscale materials and human tissues (nanomedicine). As with the changes in RT paradigms when the field has encountered newer and maturing disciplines, the incorporation of nanotechnology innovations into radiation oncology has the potential to refine or redefine its principles and revolutionize its practice. This review provides a summary of the principles, applications, challenges and outlook for the use of metallic nanoparticles in RT.
引用
收藏
页码:256 / 268
页数:13
相关论文
共 75 条
[1]   Carbon coated microshells containing nanosized Gd(III) oxidic phases for multiple bio-medical applications [J].
Arrais, Aldo ;
Botta, Mauro ;
Avedano, Stefano ;
Giovenzana, Giovanni Battista ;
Gianolio, Eliana ;
Boccaleri, Enrico ;
Stanghellini, Pier Luigi ;
Aime, Silvio .
CHEMICAL COMMUNICATIONS, 2008, (45) :5936-5938
[2]   Thermal Enhancement with Optically Activated Gold Nanoshells Sensitizes Breast Cancer Stem Cells to Radiation Therapy [J].
Atkinson, Rachel L. ;
Zhang, Mei ;
Diagaradjane, Parmeswaran ;
Peddibhotla, Sirisha ;
Contreras, Alejandro ;
Hilsenbeck, Susan G. ;
Woodward, Wendy A. ;
Krishnan, Sunil ;
Chang, Jenny C. ;
Rosen, Jeffrey M. .
SCIENCE TRANSLATIONAL MEDICINE, 2010, 2 (55)
[3]   Current status of boron neutron capture therapy of high grade gliomas and recurrent head and neck cancer [J].
Barth, Rolf F. ;
Vicente, M. Graca H. ;
Harling, Otto K. ;
Kiger, W. S., III ;
Riley, Kent J. ;
Binns, Peter J. ;
Wagner, Franz M. ;
Suzuki, Minoru ;
Aihara, Teruhito ;
Kato, Itsuro ;
Kawabata, Shinji .
RADIATION ONCOLOGY, 2012, 7
[4]   The role of atomic inner shell relaxations for photon-induced DNA damage [J].
Bernhardt, P ;
Friedland, W ;
Paretzke, HG .
RADIATION AND ENVIRONMENTAL BIOPHYSICS, 2004, 43 (02) :77-84
[5]   Radioimmunotherapy with radioactive nanoparticles:: First results of dosimetry for vascularized and necrosed solid tumors [J].
Bouchat, V. ;
Nuttens, V. E. ;
Lucas, S. ;
Michiels, C. ;
Masereel, B. ;
Feron, O. ;
Gallez, B. ;
Borght, T. Vander .
MEDICAL PHYSICS, 2007, 34 (11) :4504-4513
[6]   Evaluation of the fullerene compound DF-1 as a radiation protector [J].
Brown, Aaron P. ;
Chung, Eun Joo ;
Urick, Mary Ellen ;
Shield, William P., III ;
Sowers, Anastasia L. ;
Thetford, Angela ;
Shankavaram, Uma T. ;
Mitchell, James B. ;
Citrin, Deborah E. .
RADIATION ONCOLOGY, 2010, 5
[7]   CLINICAL-TRIALS OF RADIOSENSITIZERS - WHAT SHOULD WE EXPECT [J].
BROWN, JM .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 1984, 10 (03) :425-429
[8]   Evaluation of cytotoxicity and radiation enhancement using 1.9 nm gold particles: potential application for cancer therapy [J].
Butterworth, K. T. ;
Coulter, J. A. ;
Jain, S. ;
Forker, J. ;
McMahon, S. J. ;
Schettino, G. ;
Prise, K. M. ;
Currell, F. J. ;
Hirst, D. G. .
NANOTECHNOLOGY, 2010, 21 (29)
[9]   Physical basis and biological mechanisms of gold nanoparticle radiosensitization [J].
Butterworth, Karl T. ;
McMahon, Stephen J. ;
Currell, Fred J. ;
Prise, Kevin M. .
NANOSCALE, 2012, 4 (16) :4830-4838
[10]   Analysis of the distribution of intra-arterial microspheres in human liver following hepatic yttrium-90 microsphere therapy [J].
Campbell, AM ;
Bailey, IH ;
Burton, MA .
PHYSICS IN MEDICINE AND BIOLOGY, 2000, 45 (04) :1023-1033