A review of computational drug repositioning: strategies, approaches, opportunities, challenges, and directions

被引:211
作者
Jarada, Tamer N. [1 ]
Rokne, Jon G. [1 ]
Alhajj, Reda [1 ,2 ]
机构
[1] Univ Calgary, Dept Comp Sci, Calgary, AB, Canada
[2] Istanbul Medipol Univ, Dept Comp Engn, Istanbul, Turkey
关键词
Computational drug repositioning; Drug repositioning strategies; Data mining; Machine learning; Network analysis; GENE-EXPRESSION; CONNECTIVITY MAP; SYSTEMATIC IDENTIFICATION; DATABASE; CANCER; DISEASE; DISCOVERY; MICRORNAS; INFORMATION; SIMILARITY;
D O I
10.1186/s13321-020-00450-7
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Drug repositioning is the process of identifying novel therapeutic potentials for existing drugs and discovering therapies for untreated diseases. Drug repositioning, therefore, plays an important role in optimizing the pre-clinical process of developing novel drugs by saving time and cost compared to the traditional de novo drug discovery processes. Since drug repositioning relies on data for existing drugs and diseases the enormous growth of publicly available large-scale biological, biomedical, and electronic health-related data along with the high-performance computing capabilities have accelerated the development of computational drug repositioning approaches. Multidisciplinary researchers and scientists have carried out numerous attempts, with different degrees of efficiency and success, to computationally study the potential of repositioning drugs to identify alternative drug indications. This study reviews recent advancements in the field of computational drug repositioning. First, we highlight different drug repositioning strategies and provide an overview of frequently used resources. Second, we summarize computational approaches that are extensively used in drug repositioning studies. Third, we present different computing and experimental models to validate computational methods. Fourth, we address prospective opportunities, including a few target areas. Finally, we discuss challenges and limitations encountered in computational drug repositioning and conclude with an outline of further research directions.
引用
收藏
页数:23
相关论文
共 155 条
[1]   Deep Learning Applications for Predicting Pharmacological Properties of Drugs and Drug Repurposing Using Transcriptomic Data [J].
Aliper, Alexander ;
Plis, Sergey ;
Artemov, Artem ;
Ulloa, Alvaro ;
Mamoshina, Polina ;
Zhavoronkov, Alex .
MOLECULAR PHARMACEUTICS, 2016, 13 (07) :2524-2530
[2]   Low Data Drug Discovery with One-Shot Learning [J].
Altae-Tran, Han ;
Ramsundar, Bharath ;
Pappu, Aneesh S. ;
Pande, Vijay .
ACS CENTRAL SCIENCE, 2017, 3 (04) :283-293
[3]  
[Anonymous], 2020, Obesity
[4]  
[Anonymous], DATABASE, DOI DOI 10.1093/DATABASE/BAR065]
[5]  
Apweiler R, 2004, NUCLEIC ACIDS RES, V32, pD115, DOI [10.1093/nar/gkw1099, 10.1093/nar/gkh131]
[6]   Drug repositioning: Identifying and developing new uses for existing drugs [J].
Ashburn, TT ;
Thor, KB .
NATURE REVIEWS DRUG DISCOVERY, 2004, 3 (08) :673-683
[7]   Gene Ontology: tool for the unification of biology [J].
Ashburner, M ;
Ball, CA ;
Blake, JA ;
Botstein, D ;
Butler, H ;
Cherry, JM ;
Davis, AP ;
Dolinski, K ;
Dwight, SS ;
Eppig, JT ;
Harris, MA ;
Hill, DP ;
Issel-Tarver, L ;
Kasarskis, A ;
Lewis, S ;
Matese, JC ;
Richardson, JE ;
Ringwald, M ;
Rubin, GM ;
Sherlock, G .
NATURE GENETICS, 2000, 25 (01) :25-29
[8]   ArrayExpress update - from bulk to single-cell expression data [J].
Athar, Awais ;
Fullgrabe, Anja ;
George, Nancy ;
Iqbal, Haider ;
Huerta, Laura ;
Ali, Ahmed ;
Snow, Catherine ;
Fonseca, Nuno A. ;
Petryszak, Robert ;
Papatheodorou, Irene ;
Sarkans, Ugis ;
Brazma, Alvis .
NUCLEIC ACIDS RESEARCH, 2019, 47 (D1) :D711-D715
[9]   PESCADOR, a web-based tool to assist text-mining of biointeractions extracted from PubMed queries [J].
Barbosa-Silva, Adriano ;
Fontaine, Jean-Fred ;
Donnard, Elisa R. ;
Stussi, Fernanda ;
Miguel Ortega, J. ;
Andrade-Navarro, Miguel A. .
BMC BIOINFORMATICS, 2011, 12
[10]   The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity [J].
Barretina, Jordi ;
Caponigro, Giordano ;
Stransky, Nicolas ;
Venkatesan, Kavitha ;
Margolin, Adam A. ;
Kim, Sungjoon ;
Wilson, Christopher J. ;
Lehar, Joseph ;
Kryukov, Gregory V. ;
Sonkin, Dmitriy ;
Reddy, Anupama ;
Liu, Manway ;
Murray, Lauren ;
Berger, Michael F. ;
Monahan, John E. ;
Morais, Paula ;
Meltzer, Jodi ;
Korejwa, Adam ;
Jane-Valbuena, Judit ;
Mapa, Felipa A. ;
Thibault, Joseph ;
Bric-Furlong, Eva ;
Raman, Pichai ;
Shipway, Aaron ;
Engels, Ingo H. ;
Cheng, Jill ;
Yu, Guoying K. ;
Yu, Jianjun ;
Aspesi, Peter, Jr. ;
de Silva, Melanie ;
Jagtap, Kalpana ;
Jones, Michael D. ;
Wang, Li ;
Hatton, Charles ;
Palescandolo, Emanuele ;
Gupta, Supriya ;
Mahan, Scott ;
Sougnez, Carrie ;
Onofrio, Robert C. ;
Liefeld, Ted ;
MacConaill, Laura ;
Winckler, Wendy ;
Reich, Michael ;
Li, Nanxin ;
Mesirov, Jill P. ;
Gabriel, Stacey B. ;
Getz, Gad ;
Ardlie, Kristin ;
Chan, Vivien ;
Myer, Vic E. .
NATURE, 2012, 483 (7391) :603-607