Lp-Estimates for quasilinear subelliptic equations with VMO coefficients under the controllable growth

被引:0
作者
Sun, Bang-Cheng [1 ,2 ]
Liu, Zhi-Ming [1 ]
Li, Qiang [1 ]
Zheng, Shen-Zhou [3 ]
机构
[1] Beijing Jiaotong Univ, Sch Mech Elect & Control Engn, Beijing 100044, Peoples R China
[2] Tangshan Railway Vehicle Co LTD, Tangshan 063035, Peoples R China
[3] Beijing Jiaotong Univ, Dept Math, Beijing 100044, Peoples R China
关键词
controllable growth; subelliptic equation; L-p-estimate; reverse Holder inequality; bootstrap argument; WEIGHTED POINCARE INEQUALITIES; VECTOR-FIELDS; EMBEDDING-THEOREMS; ELLIPTIC-EQUATIONS; GREEN-FUNCTIONS; CARNOT; OPERATORS; REGULARITY; SYSTEMS; SPACES;
D O I
10.1186/s13661-016-0658-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove an interior L-p-estimate of X-gradient of weak solutions to a class of quasilinear subelliptic equations with VMO coefficients under controllable growth. Here, we use a reverse Holder inequality and De Giorgi's iteration to establish the boundedness of their weak solutions. Then a local L-p-estimate of the X-gradient of the weak solutions is derived by way of the bootstrap argument.
引用
收藏
页数:18
相关论文
共 45 条
[21]   FUNDAMENTAL SOLUTION FOR A SUBELLIPTIC OPERATOR [J].
FOLLAND, GB .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 79 (02) :373-376
[22]   WEIGHTED POINCARE INEQUALITIES FOR HORMANDER VECTOR-FIELDS AND LOCAL REGULARITY FOR A CLASS OF DEGENERATE ELLIPTIC-EQUATIONS [J].
FRANCHI, B ;
LU, G ;
WHEEDEN, RL .
POTENTIAL ANALYSIS, 1995, 4 (04) :361-375
[23]   REPRESENTATION FORMULAS AND WEIGHTED POINCARE INEQUALITIES FOR HORMANDER VECTOR-FIELDS [J].
FRANCHI, B ;
LU, G ;
WHEEDEN, RL .
ANNALES DE L INSTITUT FOURIER, 1995, 45 (02) :577-604
[24]  
Garofalo N, 1996, COMMUN PUR APPL MATH, V49, P1081, DOI 10.1002/(SICI)1097-0312(199610)49:10<1081::AID-CPA3>3.0.CO
[25]  
2-A
[26]  
Giaquinta M., 1983, ANN MATH STUD, V105
[27]   Subelliptic p-harmonic maps into spheres and the ghost of Hardy spaces [J].
Hajlasz, P ;
Strzelecki, P .
MATHEMATISCHE ANNALEN, 1998, 312 (02) :341-362
[28]   HYPOELLIPTIC 2ND ORDER DIFFERENTIAL EQUATIONS [J].
HORMANDE.L .
ACTA MATHEMATICA UPPSALA, 1967, 119 (3-4) :147-&
[29]   THE POINCARE INEQUALITY FOR VECTOR-FIELDS SATISFYING HORMANDER CONDITION [J].
JERISON, D .
DUKE MATHEMATICAL JOURNAL, 1986, 53 (02) :503-523
[30]   Subelliptic harmonic maps [J].
Jost, J ;
Xu, CJ .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 350 (11) :4633-4649