Feynman-Kac for functional jump diffusions with an application to Credit Value Adjustment

被引:7
|
作者
Kromer, E. [1 ]
Overbeck, L. [2 ]
Roeder, J. A. L. [2 ]
机构
[1] Univ Calif Berkeley, Dept Stat, Berkeley, CA 94720 USA
[2] Univ Giessen, Dept Math, D-35392 Giessen, Germany
关键词
Functional Feynman-Kac theorem; Functional Ito formula; Functional jump diffusion; Credit Value Adjustment; Path-dependent derivatives;
D O I
10.1016/j.spl.2015.06.007
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We provide a proof for the functional Feynman-Kac theorem for jump diffusions with path-dependent coefficients and apply our results to the problem of Credit Value Adjustment (CVA) in a bilateral counterparty risk framework. We derive the corresponding functional CVA-PIDE and extend existing results on CVA to a setting which enables the pricing of path-dependent derivatives. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:120 / 129
页数:10
相关论文
empty
未找到相关数据