Experimental investigation on the heat transfer between a heated microcantilever and a substrate

被引:41
作者
Park, Keunhan [1 ]
Cross, Graham L. W. [2 ,3 ]
Zhang, Zhuomin M. [1 ]
King, William P. [4 ]
机构
[1] Georgia Inst Technol, George W Woodruff Sch Mech Engn, Atlanta, GA 30332 USA
[2] Univ Dublin Trinity Coll, Sch Phys, Dublin 2, Ireland
[3] Univ Dublin Trinity Coll, CRANN, Dublin 2, Ireland
[4] Univ Illinois, Dept Mech Sci & Engn, Urbana, IL 61801 USA
来源
JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME | 2008年 / 130卷 / 10期
基金
美国国家科学基金会;
关键词
atomic force microscope; heated microcantilever; micro-/nanoscale heat transfer; nanoscale thermometer;
D O I
10.1115/1.2953238
中图分类号
O414.1 [热力学];
学科分类号
摘要
This work describes the heat transfer process from a heated microcantilever to a substrate. A platinum-resistance thermometer with a 140 nm width was fabricated on a SiO2-coated silicon substrate. The temperature coefficient of resistance estiamted from the measurement was 7 x 10(-4) K-1, about one-fifth of the bulk value of platinum. The temperature distribution on the substrate was obtained form the thermometer reading, as the cantilever raster scanned the substrate. Comparison between the measurement and calculation reveals that up to 75% of the cantilever power is directly transferred to the substrate through the air gap. From the force-displacement experiment, the effective tip-specimen contact thermal conductance was estimated to be around 40 nW/K. The findings from this study should help understand the thermal interaction between the hearted cantiilever and the substrate, which is essential to many nanoscale technologies using heated cantilevers.
引用
收藏
页数:9
相关论文
共 40 条
[1]   Raman thermometry of polysilicon microelectromechanical systems in the presence of an evolving stress [J].
Abel, Mark R. ;
Graham, Samuel ;
Serrano, Justin R. ;
Kearney, Sean P. ;
Phinney, Leslie M. .
JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2007, 129 (03) :329-334
[2]   Ultrahigh-density atomic force microscopy data storage with erase capability [J].
Binnig, G ;
Despont, M ;
Drechsler, U ;
Häberle, W ;
Lutwyche, M ;
Vettiger, P ;
Mamin, HJ ;
Chui, BW ;
Kenny, TW .
APPLIED PHYSICS LETTERS, 1999, 74 (09) :1329-1331
[3]  
Carslaw H.S., 1986, Conduction of Heat in Solids
[4]   Transient temperature measurements of resist heating using nanothermocouples [J].
Chu, DC ;
Wong, WK ;
Goodson, KE ;
Pease, RFW .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2003, 21 (06) :2985-2989
[5]   Submicron thermocouple measurements of electron-beam resist heating [J].
Chu, DC ;
Bilir, DT ;
Pease, RFW ;
Goodson, KE .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2002, 20 (06) :3044-3046
[6]   Low-stiffness silicon cantilevers with integrated heaters and piezoresistive sensors for high-density AFM thermomechanical data storage [J].
Chui, BW ;
Stowe, TD ;
Ju, YS ;
Goodson, KE ;
Kenny, TW ;
Mamin, HJ ;
Terris, BD ;
Ried, RP ;
Rugar, D .
JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 1998, 7 (01) :69-78
[7]  
Chui BW, 1999, MICROSCALE THERM ENG, V3, P217
[8]   Fundamentals of micromechanical thermoelectric sensors -: art. no. 044906 [J].
Dürig, U .
JOURNAL OF APPLIED PHYSICS, 2005, 98 (04)
[9]   EFFECT OF P DONORS ON THERMAL PHONON SCATTERING IN SI [J].
FORTIER, D ;
SUZUKI, K .
JOURNAL DE PHYSIQUE, 1976, 37 (02) :143-147
[10]   Nanoscale radiation heat transfer for silicon at different doping levels [J].
Fu, CJ ;
Zhang, ZM .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2006, 49 (9-10) :1703-1718