Signal Recovery on Incoherent Manifolds

被引:24
作者
Hegde, Chinmay [1 ]
Baraniuk, Richard G. [1 ]
机构
[1] Rice Univ, Dept Elect & Comp Engn, Houston, TX 77005 USA
关键词
Compressed sensing; sampling theory; signal de-convolution; SPARSE REPRESENTATION; BASES; PAIRS;
D O I
10.1109/TIT.2012.2210860
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Suppose that we observe noisy linear measurements of an unknown signal that can be modeled as the sum of two component signals, each of which arises from a nonlinear submanifold of a high-dimensional ambient space. We introduce successive projections onto incoherent manifolds (SPIN), a first-order projected gradient method to recover the signal components. Despite the non-convex nature of the recovery problem and the possibility of underdetermined measurements, SPIN provably recovers the signal components, provided that the signal manifolds are incoherent and that the measurement operator satisfies a certain restricted isometry property. SPIN significantly extends the scope of current recovery models and algorithms for low-dimensional linear inverse problems and matches (or exceeds) the current state of the art in terms of performance.
引用
收藏
页码:7204 / 7214
页数:11
相关论文
共 28 条
[1]  
[Anonymous], 1982, C MOD AN PROB NEW HA
[2]   Random Projections of Smooth Manifolds [J].
Baraniuk, Richard G. ;
Wakin, Michael B. .
FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2009, 9 (01) :51-77
[3]   Iterative hard thresholding for compressed sensing [J].
Blumensath, Thomas ;
Davies, Mike E. .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2009, 27 (03) :265-274
[4]  
Candes E., 2006, INT C MATH C MADR SP
[5]   Robust Principal Component Analysis? [J].
Candes, Emmanuel J. ;
Li, Xiaodong ;
Ma, Yi ;
Wright, John .
JOURNAL OF THE ACM, 2011, 58 (03)
[6]  
Chandrasekaran V., 2009, ALL C COMM CONTR COM
[7]   Atomic decomposition by basis pursuit [J].
Chen, SSB ;
Donoho, DL ;
Saunders, MA .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1998, 20 (01) :33-61
[8]   An iterative thresholding algorithm for linear inverse problems with a sparsity constraint [J].
Daubechies, I ;
Defrise, M ;
De Mol, C .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2004, 57 (11) :1413-1457
[9]   Signal Processing With Compressive Measurements [J].
Davenport, Mark A. ;
Boufounos, Petros T. ;
Wakin, Michael B. ;
Baraniuk, Richard G. .
IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2010, 4 (02) :445-460
[10]   Message-passing algorithms for compressed sensing [J].
Donoho, David L. ;
Maleki, Arian ;
Montanari, Andrea .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (45) :18914-18919